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Persistence of Memory in Drop

Breakup: The Breakdown
of Universality

Pankaj Doshi,1* Itai Cohen,2 Wendy W. Zhang,3† Michael Siegel,4

Peter Howell,5 Osman A. Basaran,1 Sidney R. Nagel3

A low-viscosity drop breaking apart inside a viscous fluid is encountered when
air bubbles, entrained in thick syrup or honey, rise and break apart. Experiments,
simulations, and theory show that the breakup under conditions in which the
interior viscosity can be neglected produces an exceptional form of singularity.
In contrast to previous studies of drop breakup, universality is violated so that
the final shape at breakup retains an imprint of the initial and boundary
conditions. A finite interior viscosity, no matter how small, cuts off this form
of singularity and produces an unexpectedly long and slender thread. If exterior
viscosity is large enough, however, the cutoff does not occur because the
minimum drop radius reaches subatomic dimensions first.

Underlying one of the common occurrences of
daily life, the breakup of a liquid drop, is a rich
and beautiful phenomenon. As a drop divides,
the neck connecting the different masses of
fluid necessarily becomes arbitrarily thin with a
curvature that grows without bound until mo-
lecular scales are reached. Because surface ten-
sion gives rise to a pressure proportional to the
curvature, this pressure also diverges. Similar
singularities, in which a physical quantity effec-

tively diverges, occur in many different realms,
ranging from the subatomic-nuclear fission (1)
to the celestial-star formation (2). The ubiquity,
simplicity, and accessibility of drop breakup
makes it ideal for studying divergent dynamical
behavior that occurs elsewhere in nature.

Near such a singularity, the dynamics
are normally governed by the proximity to
the singularity, and the dynamics become
universal so that all memory of initial and
boundary conditions is lost. In such cases,
the breakup becomes scale-invariant; after
appropriate rescaling, drop shapes near the
breakup can be superimposed at different
times onto a single form, depending on
only a few material parameters (3–6 ).

Here, we report an important exception to
this class of behavior: the breakup of a zero-
viscosity drop inside an extremely viscous ex-
terior fluid produces an unexpected, nonuniver-
sal form of singularity, in which the memory of
the initial conditions persists throughout the
breakup process. Axial structure imposed at the

outset on large length scales remains as the thin
neck collapses. The unusual character of this
breakup suggests a novel and controllable meth-
od for producing submicrometer structures.

Because all classical fluids have a finite vis-
cosity, it is important to understand the nature of
the singularity when the interior viscosity is very
small but nonzero. If the interior viscosity is
sufficiently small, as it is for an air bubble in
thick syrup, the zero-viscosity drop breakup dy-
namics persist down to the atomic scales. How-
ever, if the interior viscosity is large enough, or
the exterior viscosity small enough, the singu-
larity will be cut off. In this case, the large-scale
shape of the drop assumes an unexpected ap-
pearance. The smooth profile is transformed
into a long and thin thread, which can be less
than 1 �m thick. The drop and surrounding fluid
in our experiment were chosen to display the
zero-viscosity drop breakup dynamics, which
remember initial and boundary conditions, and
the subsequent destruction of the dynamics by
the effect of a finite interior viscosity.

Figure 1 shows a water drop with an interior
fluid viscosity �int � 0.01 poise (1 poise � 1 g
cm�1 s�1) as it drips through silicone oil (poly-
dimethylsiloxane) with an exterior fluid viscos-
ity of �ext � 120 poise. The drop shape near the
minimum forms a quadratic profile that remains
smooth and symmetric about the minimum as
the neck collapses radially (Fig. 1, A to C). This
quadratic regime, with constant axial curvature,
persists until the neck thins to a radius of about
100 �m, at which point the thinning of the neck
slows dramatically. The slowing begins at the
minimum and propagates axially so that a thin
thread is formed connecting the two conical
regions of the drop (Fig. 1, D and E). Finally,
the drop breaks at the two ends of the thread.

In both experiments and simulations, we
investigated the dynamics of the quadratic
breakup regime (Fig. 1, A to C) by measuring
the radius of the drop profile h(z, t) as a function
of z, the axial position measured from the min-
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imum value of radius h, and time t. We used the
finite-element method to simulate the breakup
by solving the Navier-Stokes equations for the
interior and exterior flows. Instead of a dripping
drop, the simulation tracks how a sinusoidal
perturbation on a liquid cylinder causes the
cylinder to break up. The algorithm has success-
fully captured the breakup dynamics for drops of
varying viscosities dripping through air, including
the successive creation of satellite droplets (7, 8).
Figure 2 shows a plot of �, the axial curvature at
the minimum, versus the minimum radius, hmin,
for two experiments with slightly different nozzle
diameters and two simulations with substantially
different initial perturbations. In all four cases, the
axial curvature curves approach constant values at
small hmin. Thus, near its minimum, the neck
shape is collapsing with a uniform radial velocity.
Unexpectedly, different initial conditions and
boundary conditions lead to different asymptotic
axial curvatures. This suggests that the quadratic
regime corresponds to a breakup that does not
result in a universal profile but instead remembers
the quadratic profile near the minimum posed by
the initial and boundary conditions.

To investigate this unusual behavior, we
examined the simulation and found the
leading-order force balance to be between sur-
face tension and exterior viscous stress. This
force balance gives rise to a collapse velocity
proportional to �/�ext, which is independent of
absolute length scale and which results in hmin

decreasing linearly with time, in both experi-
ments and simulations. We next examined the
pressure profile from the simulation and found
that the interior pressure is virtually uniform in
space, varying by less than 0.02% over the
entire drop (Fig. 3, inset). The absence of a
pressure gradient indicates that the interior
flow, and the interior inertia, is negligible. The
drop interior thus behaves as if it were static.

Previous studies have shown that drops
break only as fast as the surface-tension effects
can squeeze interior fluid out of the thinning
neck (3, 4, 9). As a consequence, the breakup
obeys a local volume-flux conservation law. In
the regime just discussed, this conservation law
is irrelevant to the dynamics. The drop breaks
only as fast as the surface-tension effect can
induce the exterior flow to collapse inward.
Interior flow effects are negligible. The local
volume-flux conservation law that was previ-
ously relevant for breakup is transformed into a
condition of uniform interior pressure.

The idea described above is captured quan-
titatively by a simple model of breakup when
�int � 0. Because the quadratic profile near the
minimum is long and slender, the breakup dy-

namics are well approximated by the collapse
of a hollow cylinder inside a viscous fluid. We
modeled the exterior velocity field as the result
of a line of point sinks situated along the drop
centerline. The strength of the sinks is deter-
mined by requiring that, at the surface, the
velocity of the exterior fluid equals the collapse
velocity of the drop. This allows us to derive an
expression for the exterior viscous stress on the
drop surface. Balancing the exterior viscous
stress against surface-tension pressure and inte-
rior pressure yields the evolution equation for
the drop profile

2 �ext

h� z,t�

�h� z,t�

�t
� P�t� 	

�

h� z,t�
� 0 (1)

The first term corresponds to the exterior vis-
cous stress, the second term corresponds to the
interior pressure, and the third term corresponds
to the surface-tension pressure. The reference
pressure is the exterior pressure far from the
breaking drop. The steady-state version of Eq. 1
was first derived by Buckmaster (10). The in-
terior pressure P(t) is related to the drop profile
by means of an integral that constrains the drop
volume to be constant over time (11). Thus the
drop-shape evolution is in general nonlinear,
even with this simple model. However, a dras-
tic simplification occurs near breakup because
P(t) is bounded and becomes progressively un-
important compared with the exterior viscous
stress and the surface-tension pressure, both of
which diverge. Moreover, the divergences in

Fig. 1. A 0.01-poise
water drop dripping
through 120-poise sil-
icone oil. The inner di-
ameter of the nozzle
is 4.7 mm. (A to C)
Quadratic breakup re-
gime. The quadratic
profile near the mini-
mum collapses radial-
ly. (D) Effect of drop
viscosity alters the
drop shape from a
quadratic with one
minimum to a long
and thin thread. (E) A close-up of the 8-�m radius and 2-mm-long thread bridging two conical regions of the drop.

Fig. 3. Maximum interior pressure
(solid line) and surface-tension pres-
sure (dashed line) from simulation of
water in viscous silicone oil breakup,
with �int/�ext � 10�4. The pressure
first remains constant, then diverges
as hmin

�2 . The cutoff radius hcutoff is
about 10�3 mm from the scaling ar-
gument. The inset shows the interior-
pressure profile along the drop center-
line when hmin � 0.1 mm. The
pressure varies by less than 0.02%
over the entire drop. To show this
slight variation, the pressure axis is
restricted to a narrow range from
4700 to 4730 dynes cm�2.

Fig. 2. Axial curvature at the minimum � versus
hmin for two dripping drop experiments (solid
symbols) with slightly different inner nozzle
diameters (4.7 mm for solid triangles and 6.2
mm for solid squares) and two cylinder breakup
simulations (open symbols) with significantly
different initial perturbation wavelengths (3.9
cm for open triangles and 2.2 cm for open
circles, with average cylinder radius fixed at 6.2
mm). The experimental measurement errors
are on the order of the symbol size, and the
simulation errors are smaller than the symbol
size. Different initial or boundary conditions
produced different asymptotic axial curvatures.
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the two stresses cancel in an unusually simple
way, resulting in the profile near the minimum
collapsing with a radial velocity �/2�ext, which
is independent of axial position. The generic
initial condition, which is a quadratic shape
near the minimum, is preserved until breakup.

This model enables us to draw several im-
portant conclusions about the breakup dynam-
ics. Because points on the surface near the
minimum move radially inward with the same
velocity, the axial length scale does not vary as
hmin decreases to 0. The breakup is not self-
similar. This is also why the axial curvature at
the minimum �, which is inversely proportional
to the typical axial length scale z0, remains
constant as hmin decreases to 0 (12) (Fig. 2).
Because the breakup region does not change in
the axial direction, the profile retains an imprint
of the imposed initial and the boundary condi-
tions. Thus, the final breakup profile is nonuni-
versal (Fig. 2).

In contrast, previously studied examples of
drop breakup produce nonlinear dynamics, so
that the drop shape is invariant within a contract-
ing region characterized by a decreasing radial
length scale hmin and a decreasing axial length
scale z0. Because this region contracts to a point
at breakup, the drop shape outside the region is
linked together discontinuously, creating a kink
instead of the smooth quadratic profile observed
here. The scale-invariant dynamics erase all
memory of initial and boundary conditions.

We now consider how a nonzero interior
viscosity can cut off this quadratic regime. The
retarding effect of viscous dissipation associated
with the interior fluid having to squeeze out of a
thinning neck, initially negligible, becomes sig-
nificant close to the breakup. We can estimate
the interior viscous dissipation during the qua-
dratic breakup regime. The size of the interior
velocity Uint is set by the local volume-flux
conservation 
hmin

2 Uint � z02
hmin(dhmin/dt),
which requires that the local thinning of the
thread dhmin/dt be balanced by the axial flow out
of the local region. The resultant estimate for

U
int

shows that the interior viscous stress �in-

tUint/hmin increases as hmin
�2 , which is more rapid

than the hmin
�1 divergence of the surface-tension

pressure. We can check this argument by look-
ing at the simulations for the perturbed cylinder.
They show that the maximum interior pressure,
which has one contribution from global volume
conservation and another from interior viscous
dissipation, increases as hmin

�2 and becomes com-
parable with surface-tension pressure as hmin

decreases to hcutoff, the cutoff radius (Fig. 3).
Above hcutoff, our simulations show that interior
viscous dissipation is negligibly small, consis-
tent with the model presented above. Below
hcutoff, the breakup is expected to slow signifi-
cantly, because the viscous resistance has a large
contribution from the interior flow in addition to
the exterior flow. The scaling argument also
predicts that hcutoff is smaller than the initial drop
radius by a factor of about �int/�ext. For a drop
that is 1 cm in radius and �int/�ext values that are
10�8 or less, the quadratic breakup regime per-
sists down to a minimum radius of a few ang-
stroms, by which point the continuum approxi-
mation breaks down. At such small values of
�int/�ext, as is the case for an air bubble in thick
syrup, the breakup is entirely in the asymptotic
�int � 0 regime, for which the quadratic break-
up analysis is valid throughout.

For larger values of �int/�ext, the finite vis-
cosity of the drop brings out a qualitative change
in the large-scale structure of the drop profile
(Fig. 1, D and E). Unfortunately, this change,
which occurs around hcutoff, lies outside of the
simulation range for �int/�ext � 10�4. To view
this regime, we performed the simulation at
�int/�ext � 10�3, which has a larger hcutoff.
Figure 4A shows the behavior for the larger
�int/�ext and clearly demonstrates that the inte-
rior pressure does not increase above the sur-
face-tension pressure. As the breakup enters the
new regime, the two minima move apart as
�(hcutoff – hmin) (Fig. 4B). Figure 4C shows the
development of a double peak in the interior-
pressure profile. The results in Fig. 4, B and C,

are consistent with the idea that the initially
quadratic profile is slowed down and blunted by
the interior viscous stresses, which can no long-
er be neglected below hcutoff. The values of
hcutoff in the cylinder breakup simulations are
smaller than those observed in the falling drop
experiment, most likely because of the differ-
ence in the boundary and initial condition and
because of additional stresses created by the
falling drop. However, in contrast to hcutoff, the
dimensionless aspect ratio for the thin thread in
the experiment is within experimental error of
that obtained from the scaling argument. Final-
ly, the drop breaks under a balance of interior
and exterior viscous stresses and surface ten-
sion, a regime previously shown to give rise to
universal breakup profiles in the form of two
connected cones (4, 13–16).

Both aspects of the breakup process—the
reproduction of the initial profile on smaller
ones during the quadratic regime and the sub-
sequent formation of a long, thin thread—are
controllable. The large exterior viscosity also
damps out noise from the environment, unlike
other breakup regimes (9). Moreover, the evo-
lution of structure is slow. A 1-cm drop of
0.2-poise fluid in a surrounding fluid of 2 
 105

poise breaks at the rate of 3 �m s�1 and creates
a thread with a radius of about 100 nm. A thin
solid thread could thus be manufactured by
adding a prepolymer (which does not change
the viscosity or the rheology) to the interior
fluid, and then rapidly photopolymerizing it
during the appropriate stage of breakup. If we
assume that bulk polymerization rates (17) are
relevant for the geometry of a thin thread, then
the slow rate of collapse should allow ample
time for the thread to solidify. This is being
attempted for encapsulation (18). For coating
technologies in which air entrainment in vis-
cous fluids is an issue (19–21), our study sug-
gests that the entrained-bubble size distribution
can be tuned by increasing the exterior viscos-
ity. Increasing the exterior viscosity so that the
breakup dynamics lie entirely in the quadratic

Fig. 4. Simulation of breakup for �int/�ext � 10�3. (A) Maximum interior
pressure (solid line) and surface-tension pressure (dashed line). The trend
is similar to Fig. 3 except that the interior pressure becomes comparable
with surface-tension pressure at hcutoff � 10�2 mm. (B) Axial location of
the minimum, z, versus minimum radius, hmin. The single minimum splits

into two minima, which move apart as �(hcutoff – hmin). (C) Interior
centerline pressure profiles when hmin equals 0.1, 0.01, and 0.002 mm.
The initial spatially uniform pressure develops a pronounced peak as
interior viscous dissipation becomes significant. After the minimum splits
into two, the pressure develops a double peak.
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regime also eliminates satellite drops. This
makes it possible to manufacture monodisperse
gas bubbles in a viscous flow, analogous to
techniques being developed to manufacture
such bubbles in inertial flows (22). The viscous
flow regime is relevant for the processing of
foods, pharmaceuticals, and metal foams.

In conclusion, we observed nonuniversal,
linear dynamics accompanying the formation of
a smooth singularity in the breakup of a water
drop in viscous silicone oil. This is the asymp-
totic regime for small enough values of �int/
�ext, so that the interior viscosity can be ne-
glected throughout the breakup process. For
larger �int/�ext, the interior viscosity becomes
important before atomic dimensions are
reached. This produces a long and thin thread.
The linear dynamics associated with the forma-
tion of a singularity demonstrate that there are
two ways for the formation of a singularity to
simplify dynamics. In the generic case, the
singularity dynamics become scale-invariant,
confined to a region that shrinks in all dimen-
sions, thereby erasing all memory of boundary
and initial conditions. In the case studied here,

the dynamics near the singularity are character-
ized by an axially uniform radial collapse, so
that the axial length scale remains constant,
thereby making it possible for memory of the
initial and boundary conditions to persist.
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A Superconducting Reversible
Rectifier That Controls the

Motion of Magnetic Flux Quanta
J. E. Villegas,1 Sergey Savel’ev,2 Franco Nori,2,3 E. M. Gonzalez,1

J. V. Anguita,4 R. Garcı́a,4 J. L. Vicent1*

We fabricated a device that controls the motion of flux quanta in a niobium
superconducting film grown on an array of nanoscale triangular pinning po-
tentials. The controllable rectification of the vortex motion is due to the
asymmetry of the fabricated magnetic pinning centers. The reversal in the
direction of the vortex flow is explained by the interaction between the
vortices trapped on the magnetic nanostructures and the interstitial vor-
tices. The applied magnetic field and input current strength can tune both
the polarity and magnitude of the rectified vortex flow. Our ratchet system
is explained and modeled theoretically, taking the interactions between
particles into consideration.

Motor proteins play a key role in the transport
of materials at the cellular level (1–3). These
biological motors are anisotropic devices
that, driven by nonequilibrium fluctuations,
bias the motion of particles, and which are

inspiring a new generation of solid-state de-
vices (3–5) that can open avenues for con-
trolling the motion of electrons, colloidal par-
ticles, and magnetic flux quanta. Here we
consider superconducting devices with aniso-
tropic pinning, where the dc transport of mag-
netic flux quanta may be driven by an ac or
unbiased current. Control of vortex motion
with asymmetric pinning can be useful for
applications in superconductivity, including
field-dependent reversible vortex diodes and
the removal of unwanted trapped flux from
devices. Several different ways of using
asymmetric pinning in superconductors to
control vortex motion have been recently pro-
posed (6–13). However, experiments in this
area (14, 15) have been difficult to control.

Earlier work on vortex dynamics in super-
conducting films (16) with regular arrays of
defects (17, 18), using either nonmagnetic
(19–22) or magnetic (23–30) pinning traps,
have explored a plethora of physical effects,
including matching effects with ordered sub-
micron magnetic defects, interstitial vortices,
random versus periodic pinning, and channel-
ing effects in the vortex lattice motion. Now
that the field of vortex dynamics on periodic
pinning potentials is sufficiently understood,
we are in a position to take the next step of
manipulating and controlling the motion of
magnetic flux quanta. Preliminary numerical
studies (10, 11) of vortex dynamics on arrays
of triangular pinning potentials have found
that rectified vortex motion should occur
when the system is ac-driven.

We fabricated arrays of submicron Ni tri-
angles with electron beam lithography (29)
on Si(100) substrates and then deposited a
100-nm-thick Nb film by dc magnetron sput-
tering. Several samples were fabricated with
different sizes and positions of the triangles
(Fig. 1A and fig. S1). For transport measure-
ments, a cross-shaped bridge was optically
lithographed and ion-etched on the Nb films
(Fig. 1B, upper inset), which allowed us to
inject the current either parallel (x axis) or
perpendicular (y axis) to the triangular base.
The Nb films grown on the array of Ni trian-
gles showed superconducting critical temper-
atures between 8.3 and 8.7 K.

Magneto-transport R(H) experiments, R
being the resistance, were done with a mag-
netic field H applied perpendicular to the
substrate in a liquid helium system. Fig. 1B
shows the R(H) data taken from the sample
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