
322 |  Soft Matter, 2022, 18, 322–327 This journal is © The Royal Society of Chemistry 2022

Cite this: Soft Matter, 2022,

18, 322

Rigidity and fracture of biopolymer double
networks†

Pancy Lwin,d Andrew Sindermann, a Leo Sutter,a Thomas Wyse Jackson, b

Lawrence Bonassar,c Itai Cohenb and Moumita Das *a

Tunable mechanics and fracture resistance are hallmarks of biological tissues whose properties arise

from extracellular matrices comprised of double networks. To elucidate the origin of these desired

properties, we study the shear modulus and fracture properties of a rigidly percolating double network

model comprised of a primary network of stiff fibers and a secondary network of flexible fibers. We find

that when the primary network density is just above its rigidity percolation threshold, the secondary

network density can be tuned to facilitate stress relaxation via non-affine deformations and provide

mechanical reinforcement. In contrast, when the primary network is far above its rigidity threshold, the

double network is always stiff and brittle. These results highlight an important mechanism behind the

tunability and resilience of biopolymer double networks: the secondary network can dramatically alter

mechanical properties from compliant and ductile to stiff and brittle only when the primary network is

marginally rigid.

Introduction

Composite fiber networks are ubiquitous in biological systems
and synthetic materials with tunable and robust mechanical
properties. For example, the cytoskeleton, the scaffolding that
gives eukaryotic cells mechanical integrity and shape, is a self-
organized composite network of protein filaments, including
actin and microtubules1. The distinct rigidity of actin and
microtubules enables cells to exhibit complex stress responses
and architectures essential for a wide range of functions.2–5 As
another example, the load-bearing capability of musculoskele-
tal tissues such as articular cartilage arises from a network-like
extracellular matrix made of collagen fibers and
proteoglycans.6–9 Finally, several synthetic double network
hydrogels have recently emerged as extraordinarily robust
materials with considerable toughness and fracture resistance
compared to conventional single network hydrogels. For
instance, the PAMPS-PAAm double network hydrogel, which
consists of interacting networks of poly(2-acrylamide-2-methyl-
propane sulfonic acid) and polyacrylamide, has a tearing energy
B4400 J m�2, which is several hundred to a thousand times

that of single network PAAm and PAMPS hydrogels.10,11 The
exceptional mechanical response of these double network
systems derives from the synergistic interplay between two
networks with very different single-filament and collective
properties.

The rigidity of stiff networks made of a single type of fiber or
biopolymer, henceforth called single networks (SN), has been
vigorously investigated in the past two decades, uncovering
mechanical phase transitions, distinct mechanical regimes,
and novel non-linear mechanical properties.12–21 More recently,
studies of the fracture mechanics of such networks have
demonstrated that low network connectivity and system-wide
distribution of damage can provide protective mechanisms
against failure.22,23 The mechanics and fracture of composite
networks and materials, on the other hand, are only beginning
to be explored theoretically, spanning systems such as compo-
sites materials made of rod-like inclusions in an SN,24,25

composite networks,26 and continuum models of double net-
work hydrogels.10 The mechanical structure-function proper-
ties of Double Networks (DNs)27,28 are less well understood, and
there remain many open questions as to the mechanisms by
which DNs achieve such remarkable mechanical performance.
In particular, it is unknown how much the second network can
affect the rigidity percolation threshold for the combined DN
system, an important parameter for setting the stiffness. Nor is
it known to what degree the second network can tune the strain
necessary for network failure (extensibility), the maximum
stress reached (strength), and the energy density of mechanical
deformation until failure (toughness) under extension, all of
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which are important for determining the workable range of
strains and stresses over which the system maintains its
integrity. Addressing these questions will help guide the
rational design of biomimetic soft materials with tunable
mechanics and provide insights into the rigidity and fracture-
resistance of load-bearing tissues such as cartilage.29,30

Here, we address these questions by combining two
structure-function frameworks, (i) a DN made of two interact-
ing disordered networks with very distinct fiber mechanics and
(ii) rigidity percolation theory to construct a Rigidly Percolating
Double Network model. Rigidity percolation theory models a
biopolymer network as a disordered network of fibers consist-
ing of flexible, sparsely connected regions and stiff, densely
connected regions.12,18,31–33 When the network consists primar-
ily of sparsely connected regions, it does not offer any resis-
tance to shear deformations and has zero shear modulus. In
contrast, when densely connected regions span the network,
the network has a finite shear modulus. The system undergoes
a mechanical phase transition from non-rigid to rigid at a
certain fiber density known as the rigidity percolation
threshold.

The rigidly percolating double network model is made of a
stiff primary network interacting with a flexible secondary
network (Fig. 1(a)). In the stiff network, it costs energy to both
stretch and bend fibers, while for the flexible network it only
costs energy to stretch fibers. We study the shear response and
crack propagation in this DN and show that the interplay of the
mechanically distinct networks facilitates tunable mechanics
and enhanced fracture resistance of the DN. Each of the two
networks in the DN is modeled as a disordered kagome network
and is constructed following the protocol described in Simula-
tion Details. The bonds in the two networks are randomly
removed according to two different probabilities, 1 � p1 for

the stiff network, and 1 � p2 for the flexible network, where
0 o p1, p2 o 1 are the bond occupation probabilities. A series of
collinear bonds connected end to end constitute a fiber in each
network. The stretching modulus of the fibers in the stiff and
flexible networks are a1 and a2, respectively, where a1 4 a2, and
the bending modulus of the fibers in the stiff network is k1. The
two networks interact with each other via Hookean springs with
spring constant a3 between the midpoints of the corresponding
bonds in the networks; for this interaction to be non-zero the
corresponding bonds must be present in both networks. See
Fig. 1(b) for illustration of the properties of the bonds in the
networks. Unless otherwise noted, we have used the following
biologically relevant parameters in the results presented:
a2/a1 = 0.1, k/a1 = 0.004,31 and a3 = a1 + a2 chosen to be the
effective spring constant of two springs a1 and a2 in parallel.
Simulations for smaller values of a3 yielded qualitatively similar
results and the percolation thresholds were unchanged. These
results are discussed in the ESI.†

Model and method
Rigidly percolating double network model

The rigidly percolating double network model is made of two
disordered networks, a stiff network and a flexible network,
interacting with each other. Each network is constructed by
following the protocol described in ref. 31 where we lay down
infinitely long fibers in two dimensions in a Kagome lattice-
based network, i.e. we start with a fully ordered lattice. To
create a broad distribution of filament lengths, bonds are
removed uniformly and in an uncorrelated manner from each
network with a given probability: 0 o p1 o 1 for the stiff
network and 0 o p2 o 1 for the flexible network. The bond
occupation probabilities p1 and p2 can be tuned independently
of each other. Within each network, when two fibers cross, we
assume a crosslink such that the two crossing fibers can rotate
freely but cannot slide relative to each other. Stretching energy
of a network is calculated by computing the energy cost
stretching or compression of individual bonds and then sum-
ming over all the bonds present in the network. Bending energy
of a network is calculated by computing the energy of bending
of pairs of bonds sharing a node which make a 180 degree
angle in the initially undeformed network, and then summing
over contributions from all such pairs of bonds present.

The total energy cost of deforming this double network is
given by:

E1 ¼
a1
2

X
ijh i

p1;ij rij
�� ��� rij0

�� ��� �2

þ k1
2

X
bijk¼p� � p1;ij p1; jk Dyijk2

E2 ¼
a2
2

X
ijh i

p2;ij sij
�� ��� sij0

�� ��� �2

E3 ¼
a3
2

X
p1;ij p2;ij x1 � x2k kð Þ2;

(1)

Fig. 1 Panel (a) represents a schematic of a zoomed-in portion of the DN,
and (b) the different contributions to its deformation energy. The black and
blue fibers belong to the the stiff and flexible networks respectively. Panels
(c) and (d) show representative DNs (with p1 = 0.62, p2 = 0.6) for our
studies of shear response and crack propagation respectively.

Paper Soft Matter

Pu
bl

is
he

d 
on

 3
0 

N
ov

em
be

r 
20

21
. D

ow
nl

oa
de

d 
by

 C
or

ne
ll 

U
ni

ve
rs

ity
 L

ib
ra

ry
 o

n 
1/

6/
20

22
 9

:3
9:

54
 P

M
. 

View Article Online

https://doi.org/10.1039/d1sm00802a


324 |  Soft Matter, 2022, 18, 322–327 This journal is © The Royal Society of Chemistry 2022

where E1 is the deformation energy of the stiff network, E2 is the
deformation energy of the flexible network, and E3 is the
deformation energy of the bonds connecting the two networks
which are modeled as Hookean springs as mentioned earlier.
In E1, the first term corresponds to the energy cost of fiber
stretching, and the second term to fiber bending.31 In E2, we
have a similar contribution for fiber stretching, but there is no
energy cost of fiber bending. The indices i, j, k refer to sites
(nodes) in each lattice based network, such that pij is 1 when a
bond between those lattice sites is present, 0 if a bond is not
present. The quantities rij and sij refer to the vector lengths
between lattice sites i and j for the deformed stiff and flexible
networks respectively, while rij0 and sij0 are the corresponding
quantities for the initial undeformed networks. The angles Dyijk

correspond to the change in the angles between initially
collinear bond pairs ij and jk for the deformed and undeformed
network respectively.

Simulation details

Each network in our double network model consists of 10 619
nodes and 21 000 bonds when all bonds are present, not
counting the connections between the two networks. The
system size was chosen to be large enough so that the normal-
ized shear modulus G/G0 (where G0 is the network shear
modulus when the bond occupation probabilities are both 1)
changed minimally with system size, but at the same time not
so large that simulations become computationally prohibitive
for very floppy networks. The rest length of bonds in each
network is 1, i.e. this length scale is used to non-dimensionalize
all lengths in the system. Similarly, all rigidities are expressed
relative to the stretching modulus a1. In our simulations,
we assume a scaled bending to stretching elasticity ratio
k/a1 = 0.004 for the fibers in the stiff network.31 We assume
the ratio of the stretching elasticity of fibers in the flexible
network to that of the stiff network to be a2/a1 = 0.1. The scaled
interaction strength between the two networks a3/a1 is varied
across the range B0.001–1, We used fixed boundaries at the top
and bottom and apply deformations via these boundaries, and
periodic boundaries on the sides. Upon application of the shear
or extensional deformations, we obtain the equilibrium state of
the deformed networks by minimizing the total deformation
energy of the double network. The numerical method we used
here is a multi-dimensional conjugate gradient (Polak–Ribiere)
method.34 Data are averaged over five simulations unless
otherwise indicated.

Results

For the shear response studies (Fig. 1(c)), we adopt a protocol
where external deformations are applied along the top and
bottom boundaries and periodic boundary conditions are used
for the left and right sides of the network. Our simulations of
the single network follow the same process, except the defor-
mation energy consists only of contribution from the stiff
primary network, since p2 = 0. To obtain the linear mechanical

response, we apply a shear strain of 5% at the boundaries,
minimize the deformation energy using a multi-dimensional
conjugate gradient minimization (Polak–Ribiere) method34 and
calculate the shear modulus.31

We show the variation of the rigidity percolation threshold
of a single network (SN) and four DNs by plotting the shear
modulus versus bond occupation probability of the stiff net-
work p1 (Fig. 2). The shear moduli G are normalized by their
respective values G0 for fully occupied networks. The four DNs
correspond to the four different values of the bond occupation
probability p2 = 0.2, 0.4, 0.6, 0.8 of the flexible network. We find
that the SN has a percolation threshold p1,c B 0.6 in agreement
with previous results,35 while the DNs have a lower p1,c, which
decreases with increasing p2, reaching p1,c B 0.35 at p2 = 0.8.
This is a noteworthy result. On its own, a single stiff Kagome-
lattice based fiber network, whose deformation energy consists
of stretching and bending energies, has a percolation threshold
B0.6,35 and a single flexible network with only stretching
deformation energy and based on such a lattice has a percola-
tion threshold B1. However, when they form a double network,
the resulting additional constraints due to their interaction
lead to a lower, tunable percolation threshold. These con-
straints also allow the normalized shear rigidity of the DNs to
be larger than that of the SN at the same value of p1, and this
rigidity can be tuned by varying p2. This result illustrates a
mechanism for how the onset of rigidity for biological and
synthetic double networks can be drastically modulated
through very small changes in filament concentration in the
secondary network.

For the crack propagation studies (Fig. 1(d)), we create a
notch 20 times the bond rest length (B1/5 times the system
length) at the center of the top boundary following the protocol
in ref. 36, and study how the size of the notch increases as we

Fig. 2 The normalized shear modulus (G/G0) shown as a function of p1 for
an SN (black circles) and four DNs (remaining data). The values of p2 are
shown in the legend. The dashed lines provide guide to the eye for the
rigidity percolation transitions. The data is averaged over five runs and the
standard deviations are indicated by errorbars.
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apply larger and larger tensile strains along the left and right
boundaries of the network.

The strains are applied quasi-statically in small increments
of 1% up to 70%, and after each application, the total energy is
minimized to generate the new equilibrium configuration of
the deformed DN. We have made the following assumptions
regarding breaking and elastic buckling of fibers: when a bond
is stretched above a certain threshold, it will break, and when it
is compressed above a certain threshold, it will buckle. Bonds
in the stiff network break at 120% of their rest length and
buckle at 95% of their rest length. Bonds in the flexible network
break at 200% of their rest length, but do not buckle. Broken or
buckled bonds will no longer contribute to the deformation
energy or rigidity of the network. Fiber breaking is an irrever-
sible process, but buckled fibers in our model can ‘‘unbuckle’’
when the extra compression is removed.

To demonstrate how the fracture mechanics changes with
the stiff network’s proximity to its rigidity percolation thresh-
old, we present results for simulations of the DN close to
(p1 = 0.62) and away from (p1 = 0.80) the rigidity threshold
(Fig. 3). The values of p1 were chosen, so that the DN has a finite
rigidity, irrespective of p2.‡ We find that both the Young’s
modulus (Fig. 3(a) and (b)) as well as the stress (Fig. 3(c) and
(d)) developed in the network initially increase with strain and
reach a maximum as previously floppy regions become
stretched and align to resist deformation. Once the fibers in
the network start to experience strains larger than their stretch-
ing (or elastic buckling) thresholds, however, they break (or
buckle), causing the network to soften. Remarkably, we find
that when the stiff network is close to its rigidity threshold, the
normalized Young’s modulus, the maximum or peak stress,
and the strain at maximum stress (onset of failure), can be
shifted dramatically by the flexible network. This tunability
arises because the sparsely populated stiff network allows the
DN to undergo non-affine rearrangements,13,17,18 leading to
large variations in rigidity. The mechanics can be further varied
using the coupling between the two networks in the DN (see
ESI†).

We quantify these trends by comparing the peak stress sp,
strain at maximum stress g(s = sp), and the fracture toughness t
versus p2 for both DNs in Fig. 3. Here we have used the total area
under the stress–strain curve as a measure of the network’s
fracture toughness. We find that the peak stress increases with
p2 for both DNs due to the additional constraints introduced by
the secondary, flexible network. The strain at maximum stress
decreases with p2 when the stiff network is close to the
percolation threshold and remains nearly constant when
the stiff network is far from the percolation threshold. Thus,
the additional constraints introduced by the secondary network
play a much greater role in restricting deformation when the
stiff network is near the rigidity percolation threshold. Finally,
we find that while the network toughness increases for both
cases, the increase is greater for the network near the rigidity

percolation threshold. This result is somewhat surprising. The
measure of toughness used here is typically proportional to the
product of the peak stress and strain at the onset of failure
where the material fails abruptly. Here, while this product
remains nearly constant for the p1 = 0.62 data as p2 in varied,
the measured area under the stress–strain curve increases with
p2. This is because as the network fails gradually, the decrease
in stress is far less abrupt than in typical materials, and the
network toughness is substantially increased.

Conclusion

These results highlight an important and novel mechanism in
shear and fracture mechanics of DN polymer systems: a sec-
ondary flexible network can be used to dramatically tune the
mechanics of a composite DN when the primary stiff network is
just above the rigidity percolation threshold. In this regime,
decreasing p2 allows internal stresses to relax through non-
affine deformations and enables the DN to remain intact until
larger strains, while increasing p2 leads to larger mechanical
reinforcement from the secondary network. The results show
how the DN can be modulated to either be extensible, breaking
gradually, as is the case for low p2 or be stronger, breaking in a

Fig. 3 (a and b) Show the normalized Young’s modulus Y/Y0 and (c and d)
show the stresses s developed in the SN (black circles) and DN (remaining
data) as a function of the uniaxial tensile strain g applied at the boundaries.
(a) and (c) Corresponds to p1 = 0.62, and (b) and (d) to p1 = 0.80; p2 is as
shown in the legend in these figures. (e)–(g) show the peak stress (sp), and
the strain at peak stress (g(sp)), and the toughness (t) as a function for p2 for
the data shown in (c) and (d). The stress is expressed in units of a1 � r,
where r is network concentration in total fiber length per volume for the
stiff network, and the toughness, which is the total area under the stress–
strain curves shown in (c) and (d), has the same unit. The data is averaged
over five runs and the standard deviations are indicated by errorbars.

‡ We found, for example, that when p1 was set to 0.55, the DN had zero shear
rigidity and exhibited no stresses when p2 was 0, 0.2, or 0.4
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more brittle fashion, as is the case for high p2. In contrast, far
above the rigidity threshold, the primary stiff network is far too
dense and rigid to allow any non-affine network restructuring
or rearrangement of the DN by varying the density of the
secondary flexible network; the DN is brittle, and breaks before
stresses can be dissipated. The low p2 limit is particularly
important in biological tissues such as articular cartilage when
it is undergoing osteoarthritis, where the proximity of the stiff
(collagen) network to the rigidity percolation threshold varies
as a function of tissue depth and the reinforcing flexible net-
work is increasingly removed as the disease progresses.31,37,38

To illustrate the above-mentioned mechanism visually, we
present stills from simulations of crack propagation in DNs
with p1 = 0.62 and 0.80 as a function of the applied tensile
strain g and p2 (Fig. 4). We find that when the stiff network is far
above the rigidity threshold (p1 = 0.80, Fig. 4(a)), the DN
ruptures abruptly at g B 0.2 for all p2 values, though the crack
morphology is more uniform at higher p2. In contrast, when the
stiff network is close to the rigidity threshold (p1 = 0.62,
Fig. 4(b)), we observed a wider range of responses. For p2 = 0,
0.2, and 0.4 the networks are extensible, initially developing
microcracks that are distributed throughout. With increasing
strain, these microcracks grow and the network decreases its
rigidity while maintaining a percolated structure. For p2 = 0.6
and 0.8 the networks are more brittle, rupturing less homo-
geneously and maintaining their rigidity up until the point of
failure.

Importantly, this ability to tune the failure characteristics
could have numerous important applications. For example, our
simulations suggest that it may be possible to construct DNs
with varying compositions to guide the trajectory or even stall
cracks propagating through the material. We speculate, given
the similarity of some of the crack morphologies in our
simulations (e.g., p2 = 0.6, g = 0.35 in Fig. 4b) to the experimen-
tally observed fracture of articular cartilage tissue (see for
example Fig. 4 in ref. 36) it is possible that cartilaginous tissues
may already be employing such mechanisms.

Over the last decade, double network systems have become
technologically important because they have enhanced toughness,
delayed gel fracture, and controllable peeling behaviors. Our results
illustrate a mechanism that allows for controlling how much the
secondary network can do to attenuate or relax stresses in the
primary network, and can inform the choice of materials and
microstructural parameters for the rational design of biomimetic
soft composite materials with desired properties.

Finally, we note that the observed richness of behaviors
presented here could be further enhanced by including addi-
tional tuning parameters such as non-linear elasticity, viscous
dissipation, structural correlations, network hierarchy, network
polarization or bond polydispersity in one or both of the
networks of the double network. This flexibility in resulting
material properties and ease of implementation make double
networks a very attractive platform for the fabrication of
mechanically tunable artificial tissue constructs. The results
presented here are an important step towards achieving this
future.
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Fig. 4 Deformation and fracture of the SN (p2 = 0) and the DN (p2 a 0) as
a function of increasing p2 (x-axis) and applied strain (y-axis). The value of
p1 is set to 0.80 in (a) and to 0.62 in (b), i.e. the stiff network is just above
the rigidity percolation threshold in (a) and far above this threshold in
(b). Both the SN and DN were subjected to uniaxial strains applied at the
boundary and the strain was increased in steps of 1%.
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