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Relating microstructure and particle-level stress
in colloidal crystals under increased confinement

Neil Y. C. Lin* and Itai Cohen

The mechanical properties of crystalline materials can be substantially modified under confinement.

Such modified macroscopic properties are usually governed by the altered microstructures and internal

stress fields. Here, we use a parallel plate geometry to apply a quasi-static squeeze flow crushing a

colloidal polycrystal while simultaneously imaging it with confocal microscopy. The confocal images are

used to quantify the local structure order and, in conjunction with Stress Assessment from Local

Structural Anisotropy (SALSA), determine the stress at the single-particle scale. We find that during

compression, the crystalline regions break into small domains with different geometric packing. These

domains are characterized by a pressure and deviatoric stress that are highly localized with correlation

lengths that are half those found in bulk. Furthermore, the mean deviatoric stress almost doubles,

suggesting a higher brittleness in the highly-confined samples.

1 Introduction

Understanding the effect of confinement on crystalline materials
is crucial to many technological applications, such as lubrication,
adhesion, and fabricating novel optical, catalytic materials.1–5

For example, during film processes, which are important for
optoelectronics, magnetic and electronic materials,6–9 internal
stresses often arise affecting the mechanical stability and
strength of the film.9–18 Here we study increasingly confined
colloidal crystals to investigate how changes in their micro-
structure affect the microscopic stresses ultimately responsible
for their bulk mechanical properties. Such colloidal systems are
comprised of particles small enough to undergo Brownian
motions that preserve a thermodynamic ensemble, while still
large enough to be optically imaged with high temporal and
spatial resolutions.19–25 As such, colloidal crystals have been widely
used as a model system to elucidate many phenomena associated
with confinement including crystal growth,26 packing,27–31 and
melting mechanisms.32

In principle, knowing all particle positions and their inter-
actions is sufficient to determine the suspension’s structural
order and stress distribution. Unfortunately, resolving the
stress distribution within colloidal materials has remained
experimentally challenging. In the simplest colloidal system –
hard-spheres – particles do not interact until contact. The steep
hard-sphere potential and experimental noise in locating
particles make potential-based stress calculation (force times
relative vector) impractical in experiment. In this work, we use a

new technique – Stress Assessment from Local Structural
Anisotropy (SALSA) – to measure the stress distribution in
confined hard-sphere colloidal polycrystals.33 SALSA uses the
particle positions captured using confocal microscopy to calculate
the orientation dependent particle collision probabilities. These
probabilities are used to determine the stress at the single particle
scale. Using SALSA we follow the evolving stress distribution in
a polycrystal as it is compressed quasi-statically between two
parallel plates.

2 Experiments
2.1 Samples and instruments

We conduct experiments with suspensions comprised of sterically
stabilized poly(methyl methacrylate), PMMA, particles. The parti-
cles have a diameter of 2a = 1.62 mm, polydispersity E3%, and are
fluorescently labeled with DiIC18(3) (1,10-dioctadecyl-3,3,30,30-
tetramethylindocarbocyanine perchlorate) for confocal imaging.
The solvent – a mixture of decalin and CXB (cyclohexylbromide) –
has a refractive index and density that nearly match those of the
PMMA particles. While a slight mismatch between the particle
and solvent density Dr E 0.03 g cm�3 is introduced to induce
slow sedimentation for the bulk samples, the confined crystal
samples are all density-matched. We approximate the hard-
sphere interparticle force by saturating the solvent with tetrabutyl
ammonium bromide (TBAB) at a concentration (E260 nM),34 and
using a syringe filter to remove any excess salt granules.35 The
added TBAB salt screens the electrostatic force and results in a
Debye length, E100 nm, substantially smaller than the particle
diameter.36
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We use a high-speed confocal laser scanning microscope
(Zeiss, LSM 5 LIVE) to image the 3D structure of the sample. We
acquire a time series of 15 image stacks where each stack contains
up to 512 � 512 � 500 voxels, corresponding to a sample volume
of 71 � 71 � 68 mm3. We use our confocal rheoscope to confine
our crystal samples between two plates with a separation that is
uniform to within �0.2 mm.37–39 The top plate, a silicon wafer
(4 mm � 4 mm), is fixed to the rheoscope’s kinematic mount and
is static throughout the experiment. The bottom plate, a trans-
parent coverslip for imaging from below, is attached to a multi-
axial piezo electric, and can be moved vertically (z-axis) to change
the gap size.39 The multi-axial piezo (PI P-563.3CD) has a travel
range 300 mm in the z direction and an accuracy �2 nm. Using
this parallel-plate setup we reduce the gap heights in a controlled
manner from 38 mm down to 6 mm (24 Z h/2a Z 4).

2.2 Structure and stress measurements

We process the confocal data and locate the particle positions
using the Crocker–Grier featuring algorithm40 that locates
particle positions with sub-pixel accuracy (E50 nm).21,41–43

From the particle positions, we employ a standard bond-order
parameter method44–48 to calculate the local three dimensional
(3D) structure order. In the bond-order parameter calculation,
we determine the normalized complex order parameter q̂lm(a)

for each particle a, q̂lmðaÞ ¼
1

C
Ylm r̂ab
� �� �

b2nn, where factor C

normalizes the order parameter such that
P
m

q̂lmðaÞq̂lm�ðaÞ ¼ 1,

Ylm(r̂ab) is the spherical harmonic function of the unit vector r̂ab
pointing from particle a to b, and h� � �ibAnn denotes the average
of the neighbors of particle a. The neighboring particles are
defined as those with a center-center distance within 1.41(2a),
which coincides with the first minimum of the radial distribu-
tion function g(r). Following previous protocol, we set l = 6.44–48

The number of ordered neighbors is then approximated by sum-
ming the complex inner product, Nord ¼

P
m;b

q̂lmðaÞq̂lm�ðbÞ. Here,

the number of ordered neighbors has a range 0 r Nord r 12.†
From the particle positions, we can also measure the stress

at the single particle scale using SALSA. In our Brownian hard-
sphere systems, the force with which particles collide is related
to the thermal energy kBT. Using a time series of featured
particle positions, we deduce the thermal collision probability,
and compute the stress arising from these collisions. As shown

by previous work,33 the stress tensor saij = sij(
-

Xa) at particle a can

be approximated by saij ¼
kBT

Oa

a

D

� �
ca
ijðDÞ

D E
, where Oa is the

volume occupied by the particle, D is the cutoff distance from
contact. Here, hca

ij(D)i is the time-averaged local structural

anisotropy for the particle a, ca
ijðDÞ

D E
¼

P
b2nn

r̂abi r̂abj

* +
, where

nn denotes the particles that lie within a distance 2a + D from
particle a, ij are spatial indices, and r̂ab is the unit vector
pointing from particle a to particle b.

In granular literature, hca
ij(D)i also denotes time-averaged

fabric tensor.49 While the trace of the time-averaged fabric
tensor

P
i

ca
ii determines the contact particle number, the off-

diagonal terms report the anisotropy of these contact particle
configurations. When averaged over time, the fabric tensor of
the selected particle captures the probability of Brownian
collisions between it and its neighbors. This probability is
linearly proportional to the cutoff distance, or shell thickness
D when D{ a. Therefore, when scaling the collision probability
by D, the stress is independent of D.

The last step of the SALSA calculation scales the probability
by the energy density per collision kBT/Oa. In a defect-free
crystal, Oa is simply the system volume divided by the particle
number. However, in a crystal containing defects, the local
volume occupied by each particle varies. This variation needs to
be considered to correctly measure the stress near defects. So, we

first calculate the pointwise stress, sptij ð~xÞ ¼
kBT

dV

a

D
cijð~x;DÞ
D E

then perform a spatial average to obtain a macroscopic measure-
ment at the particle-level.50 Here, dV in theory, should be an
infinitesimal volume. In practice, when the pointwise stresses
are assigned to a 3D discrete grid, dV is the single box volume of
the grid. The continuum stress field scont

ij (-x) is then smoothed,

scontij ð~xÞ ¼
Ð
~y2Rwð~y�~xÞs

pt
ij ð~xÞd~y, where in our experiments

w(r) – the weighting kernel – is a Gaussian function

p�3=2rw�3e
� r2

2rw2 .50 In particular, we set rw = 2a to remove stress
features on length scales smaller than a particle. We have
tested different discrete grid sizes, and other normalized
weighting kernels, and find the results insensitive to those
changes. This spatial average effectively addresses local volume
variation. Finally, while SALSA can be modified to account
for the contributions due to the confining surfaces, for
simplicity, in the data presented here, we exclude boundary
particles in all final presentations of local structure and stress
distributions.

3 Bulk crystals

In the tested bulk crystal, we observe different types of defects
including vacancies, dislocations, stacking faults, grain boundaries,
and voids. These defects are often close and can interact with one
another. The typical size of a single crystallite is approximately
50 mm � 50 mm � 50 mm, containing on the order of 103 particles.
We show a horizontal slice of a 3D confocal image in Fig. 1(a). In
the image, we see a crystallite in the center surrounded by several
other domains. The grain boundary of the center domain is high-
lighted by the dashed red contour. By performing the bond-order
parameter analysis, we determine the number of ordered neighbor
particles Nord, and plot its distribution in Fig. 1(b). The red
particles represent defect regions with lower Nord; blue particles
are crystalline domains with higher Nord. To better visualize

† This range is identical to those calculated in the previously employed threshold
method, Nord

0 ¼
P
m
H q̂lmðaÞq̂lm�ðbÞ � 0:5ð Þ where H denotes Heaviside function.44

Compared to the previous definition, Nord reports fractional contribution to the
local ordering, and more finely resolves the crossover between crystalline and
defect structures.
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defects deeply embedded in the crystal, we remove crystalline
particles with Nord 4 5.5. The remaining particles are shown in
Fig. 1(c). For further clarity, we remove particles with z-positions
higher than 60 mm. We find that the thresholded particle
distribution faithfully captures the grain boundaries highlighted
in the raw confocal image illustrated by Fig. 1(a).

To determine whether the crystalline order affects the stress
distribution we apply SALSA to our polycrystal. Since the
magnitudes of individual stress components depend on the
orientation of the coordinate system, we focus on primary
tensor invariants, including the pressure, the three principal
stresses, and the von Mises stress. Our polycrystal sample has a

mean pressure �P ¼ 1

3
�sxx þ �syy þ �szz
� �

approximately 39 mPa,

consistent with the prediction from previous numerical
simulations.51 Furthermore, the measured pressure as a function
of height is also consistent with the estimated trend of hydrostatic
pressure arising from gravitational settling due to the slight
mismatch in the particle and solvent densities (DrE 0.03 g cm�3).
See Section 8 for detailed analyses on the bulk pressure.

In Fig. 2(a) we show the 3D pressure field of our polycrystal
sample. The red particles indicate regions with higher pressure
and blue particles indicate regions with lower pressure. The

pressure fluctuation has a length scale B10 particles considerably
smaller than the size of a single domain indicating intragrain
stress fluctuations. By comparing the pressure (Fig. 2(a)) and Nord

(Fig. 1(b)) distributions, we find that the pressure fluctuation
has a relatively random spatial distribution, and is not notably
correlated with the grain boundary arrangement.

We also determine the three principal stresses, s1, s2,
and s3, by calculating the eigenvalues of the measured
three-by-three stress matrix, see Section 9. We find that the
distribution of each principle stress is similar to that of
the pressure. We therefore extract the difference between
them and calculate the deviatoric – von Mises stress

sVM¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
s1�s2ð Þ2þ s2�s3ð Þ2þ s3�s1ð Þ2

h ir
. Similar to pres-

sure, sVM is also an invariant. Since this invariant satisfies the
property that two stress configurations with equal deviatoric
strain energy have the same value of sVM, such a scalar is
effectively a stress field signature capturing the distortion
energy of a material under various loads.‡ In continuum
elasticity, the mean of sVM is often used as a criterion in
determining how close a metal or alloy sample is to the yield
point when subjected to loads.52 In atomic-scale simulations,
similar yielding criteria have been employed to elucidate the
local yielding mechanism in glassy systems.53

In Fig. 2(b), we show the von Mises stress field sVM of our
bulk polycrystal. We find that the sVM distribution is also
roughly random. Counterintuitively, the distribution of the
high sVM particles does not follow the trend of the grain
boundaries shown in Fig. 1(a). In fact, many of the highly
stressed regions are well within the crystalline domains (see
Section 9 and Fig. 11). The observed uniform and random
fluctuations of P and sVM are consistent with the evenly spread
stress fluctuations previously reported in polycrystals of hard-
sphere silica particles.33

Fig. 1 Microstructure and local structure order of the bulk PMMA polycrystal. (a) The x̂ŷ slice of confocal data shows the particle configuration. The grain
boundaries surrounding the central crystallite are highlighted by green dashed lines. The 3D distribution of order neighbor number Nord is shown in (b).
In contrast to the crystalline domains (blue particles), the defect regions (red particles) have lower values of Nord. By thresholding Nord (c), we uncover the
particles following the grain boundaries highlighted in (a) with green dashed lines.

Fig. 2 3D distributions of pressure and von Mises stress of the bulk
polycrystal. (a) Pressure distribution. (b) von Mises stress. The color bars
denote the magnitude of the stress. The stress distribution determined by
SALSA is a continuous field. We then resample the stress data at individual
particle positions, and plot them in the same fashion as local structure data
shown in Fig. 1(b) for comparison.

‡ Consider a pure shear case where a metal yields at a critical shear stress sc
xy: the

corresponding von Mises stress is sVM ¼
ffiffiffi
3
p

scxy. Therefore, if a material yields in
uniaxial tension at sVM = sc

xx, it will also yield under a shear strain, but now at a

lower value scxy ¼ 1
	 ffiffiffi

3
p

scxx
� �

.
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4 Confined crystals

Confinement is known to affect the structure of crystals.27,29–31,54–57

Here, we use SALSA to determine whether such structure modifica-
tions are accompanied by changes in the stress distribution. To
create a confined polycrystal, we load our crystalline suspension –
volume fraction fE 0.63 – in a confocal rheoscope. The rheoscope
has three differential screws that allow us to finely adjust the
alignment and gap h between two parallel plates holding the
sample. We study the confined sample for seven different gap
heights, starting with a bulk sample (h = 38 mm E 24(2a)). We
then gradually move the bottom plate upward, reducing the gap
height down to h = 6 mm r 4(2a). When the gap decreases, the
parallel plates compress the sample and induce a squeeze flow
that drives particles outward causing additional structural rear-
rangement. An oscillatory shear flow with a small strain ampli-
tude 10% and frequency of 1 Hz along x̂ẑ is applied for 200 cycles
to prevent local jamming and speed up sample recrystallization.
Importantly, this low strain amplitude does not generate large
structural rearrangements. Thus, the final structure at each
height h is primarily determined by the squeeze flow and degree
of confinement.

4.1 Structure

We show representative orthogonal slices from the confocal
images for four gaps in Fig. 3(a–d). The black regions above
(green arrow in Fig. 3(b)) and below (orange arrow) the sample
(blue arrow) correspond to the top and bottom plates, respec-
tively. We use confocal images to locate particle positions, and
perform the bond order parameter analysis. 3D reconstructions
of these particles can be seen in Fig. 3(e–h). The particles with
high Nord are in blue, and low Nord are in red. By inspection we
observe that the local structural order varies non-monotonically
with gap with crystals at intermediate gaps h E 10(2a) appear-
ing more ordered. In addition, the crystal structure appears to
break up into smaller domains at small gaps.

We quantify these observed trends by plotting the Nord

histograms for the four different gap heights h in Fig. 3(i–l).
We find that for large gaps h 4 10(2a) the distributions look
similar with a relatively narrow width. As the sample is con-
fined to smaller gaps, however, we observe that the distribution
becomes broader with a larger probability of having particles
with lower order. These behaviors are further quantified in
Fig. 4, in which the mean and standard deviation of Nord for all

Fig. 3 Local structure measurements of confined polycrystals. (a–d) Orthogonal slices of confocal images for four representative gap sizes h (labeled).
The sample is confined by a silicon wafer (top) and a coverslip (bottom). The plates are not fluorescently labeled, so they appear dark. The coordinate
definition and scale bar are shown in the inset of (d). (e and f) Distributions of ordered neighbor number shown in the same (a–d) order. The top and
bottom particle layers are removed in the final presentation (g and h). In the ultra-confined sample (h = 3.7(2a)), we observe small crystallines with
different packing phases due to geometric constraint. The boundaries between these ordered domains have disordered packing configurations as
indicated by the red particles. (i–l) Histograms of ordered neighbor number Nord are shown in the same order. The orange dashed line indicates the
evolution of the most probable Nord. Overall, the local structure order increases slightly with decreasing gap height when h Z 10(2a), then reduces with
decreasing gap height when h o 10(2a).
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seven gaps investigated are plotted versus h/(2a). These measure-
ments indicate that reduction in structural order and increase in
its variance become more pronounced for gaps smaller than ten
particle diameters. These observations are consistent with a
large body of previous research indicating confinement effects
become significant in samples confined to gaps containing less
than ten layers.27,29–31

4.2 Stress

We calculate the 3D pressure distributions of all tested samples,
and show horizontal 2D slices (x̂ŷ at z E h/2) for the same four
representative gap heights h in Fig. 5(a–d). Similar to the bulk
measurements, the pressure fluctuations in confined samples
are evenly spread, and roughly uncorrelated with the grain
boundary arrangement. Furthermore, as anticipated, the mean
pressure remains approximately constant (to within 10% of the
mean) as h decreases. The constant pressure results from the
fact that the confined sample is surrounded by a suspension
reservoir residing beyond the confining plates that regulates
the overall pressure of the confined zone. We also find that the
standard deviation of the pressure is independent of h. The
uniformity of the standard deviation is illustrated by the histo-
grams of normalized pressure P/ %P shown in Fig. 5(e), in which all
four datasets collapse on a single Gaussian distribution, con-
sistent with the Gaussian pressure distribution found in the bulk
crystal samples (see Fig. 9(d)). We note that while the structural
order is substantially smaller at small gaps, the corresponding
pressure histogram remains Gaussian. In particular, we do not
see evidence of significant deviations from Gaussian behavior as
is typically observed in glassy systems.58–61

Although the mean and standard deviations of the pressure
are unaffected by confinement, its spatial distribution substan-
tially changes. In the bulk sample, we find that fluctuations are
long-ranged B10 particles. However, under confinement, these
fluctuations become localized, see (Fig. 5(d)). Such a stress
localization is characterized by calculating the correlation

function CPð~r=2aÞ ¼ P ~xþ ~r

2a


 �
� �P


 �
Pð~xÞ � �Pð Þ

� 
~x

�
Pvar.

Here, CP(-r/2a) is unity at origin -
r/a = 0 and zero at -

r/2a - N

while Pvar is the variance of the pressure. For simplicity, we plot
the radial part of the correlation function CP(r/2a) in Fig. 5(f).

As shown, the correlation function decays faster for smaller gap
size h, indicating a more localized pressure fluctuation. At the
smallest gap we explored (h/2a = 3.7) the correlation length
is E3.1(2a) about three times shorter than in bulk sample. This
reduction in correlation length tracks the decrease in grain size
(also approximately a factor of three) as the crystal is squeezed.

We perform the same analysis on deviatoric stress for
different gap sizes, and show 2D slices of the von Mises stress
sVM fields for four different h, see Fig. 6(a–d). Consistent with
the pressure distribution, the correlation between sVM and
grain boundary arrangement is negligible. As shown in
Fig. 6(e), the histogram of sVM shifts to the right and broadens
with decreasing h, indicating a higher mean value and standard
deviation. These trends become more pronounced when h r 10(2a).

Similar to our treatment of the pressure, we quantify
the length scale of sVM fluctuations by calculating its

correlation function, CVMð~r=2aÞ ¼ sVM ~xþ ~r

2a


 �
� �sVM


 ��

sVMð~xÞ � �sVMð Þi~x
�

sVM var. We plot the radial component of

the correlation CVM(r/2a) in Fig. 6(f). Consistent with the
pressure correlation evolution, CVM(r/2a) also decays more

Fig. 4 The statistics of ordered neighbor number Nord in confined samples.
(a) Mean value %Nord slightly peaks around h/2a B 13 then decays with
decreasing h. (b) Standard deviation Nstd

ord remains roughly unchanged when
h/2a Z 10, and starts to increase when h/2a o 10.

Fig. 5 Pressure distributions in confined polycrystals. (a–d) Horizontal
slices (x̂ŷ) of 3D pressure distributions in polycrystals for four representa-
tive h. The color scale is located between (a) and (b) and shared by all plots.
(e) Histograms of normalized pressure P/ %P where %P is the mean pressure,
remain constant for all h. (f) Radial part of the pressure correlation function
CP(r/2a). The correlation function decays faster when the system is confined
indicating a shorter correlation length and pressure fluctuation localization.
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rapidly with decreasing h. As with the pressure, this reduction
in correlation length also tracks the decrease in grain size as
the crystal is squeezed.

The pronounced change in the sVM suggests a link between
the local structure order and sVM. To illustrate this relation-
ship, we plot the mean deviatoric stress �sVM against the ordered
neighbor number averaged over sample %Nord in Fig. 7. The
straight dashed line fits to the data showing a clear correlation
between �sVM and %Nord. More importantly, the mean deviatoric
stress approximately doubles while %Nord decreases only by B15%.
In atomic systems higher �sVM indicates the system is closer to
yielding suggesting a lower shear stress would be required to
induce plastic deformation of the crystal.

5 Discussion and conclusions

Our studies, which combine both structure and stress measure-
ment at the single particle scale, clearly illustrate that confine-
ment can have profound consequences for stress distributions
in hard sphere crystals. While we find that the distribution of
the pressure and the von Mises stress are weakly correlated with

the grain boundary location, their fluctuations become more
localized due to the additional grain boundaries introduced by
our confining procedure. Thus, the grain boundaries effectively
shield each grain from the specific spatial distribution of stresses
in neighboring grains.

In addition, we find that the deviatoric stress has a much
wider distribution of magnitudes and a mean value that nearly
doubles as the gap is reduced from h/2a E 24 to h/2a E 4.
In our system, this reduction in gap produces smaller grain
sizes. Such a grain size reduction has been suggested to have
a great influence on the microstructure,62 defect density,63,64

and particle diffusivity65 in polycrystals. More importantly, in
atomic nanocrystals, grain size reduction leads to substantially
lower yield stress a phenomena known as the inverse Hall–Petch
relation.66,67 Such trends are consistent with our observed
enhancement in the deviatoric stress – typically a measure of
how close a system is to yielding. Further experiments in which
the normal force is continuously measured or experiments in
which the yield stress under shear is determined for crystals
under different degrees of confinement would shed light on
whether a direct link can be made between our colloidal system
and films comprised of nanocrystalline grains.

Such studies would also help determine whether different
yielding mechanisms dominate when the grain size is reduced.
For example, it has been shown in numerical simulations that
in large grains dislocations penetrate the grains and entangle
resulting in strain hardening. In contrast, for small grains,
plastic flow induces stacking faults and twining that localize
near grain boundaries, and do not contribute significantly to
the flow stress. Experiments in which we can simultaneously
plastically deform the crystals while measuring their order and
stress evolutions would elucidate whether similar mechanisms
are at play in these hard sphere colloidal crystals.

More broadly, combining the bulk stress measurement and
SALSA provides a direct way to quantify the interplay between
microscopic defect structures and macroscopic mechanical
properties. This approach opens the door to uncovering the
mechanisms that underly many defect-dominated phenomena
in solid mechanics including defect-assisted premelting, strain
hardening, and material fatigue.

Fig. 6 von Mises stress sVM distributions in confined polycrystals. (a–d)
Horizontal slices (x̂ŷ) of 3D distributions for four representative h. The color
scale is located between (a) and (b) and shared by all plots. (e) Histograms
of sVM. We find that the histogram extends toward the right indicating an
enhancement of mean sVM when h decreases. (f) Radial part of the von
Mises stress correlation function CVM(r/2a). The correlation function decays
faster when the system is confined, indicating a localized sVM fluctuation.

Fig. 7 Mean value of von Mises stress �sVM as a function %Nord. �sVM nearly
doubles within a 15% decrease in %Nord. The orange dashed line fits to the
data denoting a substantial correlation between the structure and resulting
deviatoric stress.
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6 Appendix A: crystal sample
preparation and imaging details

To grow a bulk crystal, we set the solvent density value
(B1.20 g cm�3) slightly lower than the particle density
(B1.23 g cm�3), so the particles can sediment and form a
crystal with a higher volume fraction. We load a suspension with a
volume fraction f E 0.60 in a sample cell and hermetically seal it.
Prior to the experiment, the sample is placed on the microscope
stage for at least 24 hours, until the sedimentation is complete. The
resulting crystal has a total thickness of approximately 280 mm and
volume fraction f E 0.67 � 0.03. During the crystal growth, the
Péclect number for sedimentation is Peg = Drga4/kBT B 0.03, where
Dr = 0.03 g cm�3 refers to the particle-solvent density mismatch, g
the gravitational acceleration, and kBT the thermal energy. The
small Péclect number, Peg { 1, indicates that the particle sedi-
mentation rate is much slower than its self-diffusion. As a result, the
PMMA sample can form polycrystals with far larger grain size and
lower defect density than silica systems,33 where the particle density
is significantly mismatched.

Our confined crystal samples are all density-matched, and
we did not observe any significant particle sedimentation
during the course of the experiment. The confined suspensions
have a volume fraction f E 0.63, slightly lower than the bulk
crystal value f E 0.67, and have a lower viscosity, allowing it to
be loaded in a confocal rheoscope.30

At an imaging rate 60 frames per second, the acquisition
time of one confocal image stack that consists of 400 slices is
B6.7 s. This time scale is comparable to a particle’s relaxation
time tD = 6pZ0a3/kBT B 4.8 s where Z0 B 2.1 mPa s is the solvent
viscosity. The final SALSA stress field is averaged over 15 image
stacks requiring B100 s to collect. We observe short-time stress
fluctuations arising from particle random motions within their
local environment over the image acquisition time. Our data is
focused on these relatively short time scales rather than the
stresses associated with the long time annealing of crystal
grains76 or the glassy behavior near grain boundaries.28

7 Appendix B: bulk crystal structure

To visualize the orientations and types of crystals, we perform a
bond-angle analysis distinguishing the fcc and hcp crystals.68,69 We
highlight the color of fcc crystals (green) and tone down the color of
hcp crystals (red) in Fig. 8(a). In Fig. 8(b) we reverse the color
contrast. We find the fractions of fcc (E60%) and hcp (E40%)
crystals comparable. This finding is consistent with previous com-
putational studies, in which the fcc configuration is shown to be
entropically favored over hcp, but only by 10�3kBT per particle.70–72

Furthermore, the observed fcc fractions a B 0.6 is also consistent
with the values found in previous scattering73,74 and direct
imaging23,75 experiments, which show that colloidal polycrystals
are essentially comprised of randomly-stacked hexagonal layers with
aE 0.5. We also find that the horizontal fcc and hcp stacks (with a
crystal orientation 111 parallel to z-axis) do not alternate consistently
across the field of view, as indicated by the arrows in Fig. 8(b).

This stacking inconsistency leads to stacking faults that can be
identified by the vertical interfaces between the two crystals. The
high density of these planar defects in our nearly-equilibrium
crystals arises from the small free energy cost associated with the
fault formation. By observing the crystal orientation, we also find
that most of the crystal domains have a (111) plane parallel to the
coverslip. This parallel alignment is consistent with the previously
reported mechanism of crystal growth from sedimentation.43 In this
case, the first few crystal layers form simultaneously near the flat
bottom plate, while further crystals grow layer by layer.

8 Appendix C: bulk crystal pressure

We find excellent agreement between our measured pressure value
(horizontal line in Fig.9(a)) and the value predicted by simula-
tions (orange line) of hard spheres at the volume fraction found
(f E 0.67, vertical line) in our system. To investigate how this
pressure value depends on the SALSA shell thickness D, we plot
%P versus D (black joined points) in Fig. 9 (b). The constant %P
highlighted by the green shade and horizontal red line indicates a
pressure value insensitive to shell thickness between 50 nm r Dr
180 nm. The overestimated pressure at D o 50 nm arises from
polydispersity and the particle overlap associated with featuring
uncertainties. The underestimated pressure at D 4 180 nm arises
from the saturation in the collision probability once all the nearest
neighbors are included. The observed D – independent pressure
confirms that both our imaging and particle featuring resolutions
are adequate to quantify the particle collision probability and its
resulting stress. Throughout all SALSA analyses in this work, we set
the shell thickness D = 80 nm.

The particle polydispersity has different influences on the
normal and shear stress measurements. A detailed discussion
of this issue can be found in our previous work (ESI of ref. 33),
where the shear and normal stresses near a vacancy defect are
measured. Overall, since the pressure measurement relies on a
more accurate identification of colliding particles, it can be
influenced by the polydispersity more notably. In contrast to
the pressure, the shear component is primarily related to the
angular anisotropy of the neighboring particle configuration;
hence, it is affected by the polydispersity less. In the current

Fig. 8 We use OVITO68 to visualize the fcc (green) and hcp (red) domains
in (a) and (b). In (a) the fcc crystals are brighter and hcp crystals are dimmer.
The color tone is reversed in (b). Stacking faults can be seen at the
interfaces between fcc and hcp within horizontal planes.

Soft Matter Paper

Pu
bl

is
he

d 
on

 2
1 

O
ct

ob
er

 2
01

6.
 D

ow
nl

oa
de

d 
by

 H
ar

va
rd

 U
ni

ve
rs

ity
 o

n 
16

/1
2/

20
16

 1
8:

34
:4

2.
 

View Article Online

http://dx.doi.org/10.1039/c6sm02079h


This journal is©The Royal Society of Chemistry 2016 Soft Matter, 2016, 12, 9058--9067 | 9065

work, the particle polydispersity (r3% B 40 nm comparable to
the particle featuring error) is readily smaller than the shell
thickness D = 80 nm that defines the colliding criterion. There-
fore, we anticipate that the identification of colliding particle is
primarily associated with D rather than polydispersity.

Finally, since we grow our bulk polycrystal sample from particle
sedimentation, we anticipate the crystal pressure depends on the
sample thickness and the mismatched density between particle and
solvent. Furthermore, we anticipate that the pressure should
not significantly vary with the height z, given that the depth of
view E68 mm is much thinner than the sample thickness zc E
280 mm. We plot the pressure averaged over the x�y plane as a
function of height z in Fig. 9(c). Overall, the pressure trend is
consistent with the estimated hydrostatic pressure arising from
gravity, Drg(zc � z)f (blue dashed line), and we do not observe a
clear decay in pressure. The pressure variation is mainly dominated
by the fluctuations from the defect distribution in the sample. In
Fig. 9(d) we show the histogram of the pressure fluctuation. The
histogram can be described well by a Gaussian distribution (orange
line) with a standard deviation E6 mPa corresponding to 15% of
the mean. This magnitude of pressure fluctuation is consistent with
previous results found in silica systems.33

9 Appendix D: principal and von Mises
stresses in bulk crystals

We calculate the three principal stresses s1, s2, and s3 and show
them in Fig. 10. The three principal stresses are the eigenvalues

of the stress tensor, and are thus independent of the coordinate
orientation. The common trend between the three principal
stresses corresponds to the hydrostatic pressure variation, while
the difference is related to the deviatoric stress sVM.

We calculate sVM and visualize its distribution within the
sample by excluding particles with sVM o 22 mPa. The thresholded
field is shown in Fig. 11. We find no obvious correlation between
the distribution of the particles with large sVM and the grain
boundaries within the polycrystal.
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