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We present experimental results on the snap-off dynamics of a drop with viseasityipping

through a fluid of viscosityy. This paper focuses on the Stokes regime where both the inner and
outer fluid viscous stresses are balanced by the pressure gradients arising from the interfacial
curvature. We track the time dependence of the drop profiles near snap-off and find that successive
profiles can be rescaled onto a single curve. We explore the dependence of this scaling on the nozzle
diameter, surface tension, density mismatch, and viscosity xatide find that only\ affects the
rescaled profile. Finally we investigate the dependence of the breaking rate on
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I. INTRODUCTION and pressure-gradient terms which must balance. As a drop
pinches-off, it moves through different asymptotic regimes
When a drop snaps offFig. 1) its minimum radius  within which a subset of terms from the full equations pri-
shrinks to zero in a finite amount of time. The pressure eXmarily describes the flod*> Numerically and theoretically
erted by the interface is inversely proportional to the mini-accessing different regimes entails including or excluding
mum radius of the drop and becomes singular as the drogsjevant terms in the governing equations. Experimentally
approaches snap-offNear such a singularity, the viscous the fluid parameters are tuned so that the relevant asymptotic
stresses and velocity flow fields in the governing Navier—egime manifests itself in the experimentally accessible
Stokes equations often diverge as well, while the axial a”‘l’ength scales of 1 cm to &m. Figure 1 expands and reor-
radial length scales describing the problem become Va”ishganizes Lister and Stone’s diagrat display the combina-
ingly small? When the minimum drop radius reaches mo-tions of the stresses due to both the inside and outside fluid
lecular scales an alternative atomistic description must beyat are experimentally accessible. Also shown are
used”’ o ) ", ~ photograph¥ of the profiles near snap-off for the regimes
Investigating drop breakup is a difficult task. The shrink-\ynere a corresponding similarity solution has been found.
ing length scales require that simulations use increasingly | ister and Ston® showed that, assuming molecular
finer grids to capture the snap-off details making it prohibi-gcaies are not reached first, the Stokes regime is the final
tive to simulate_the full equation_s during the f_inal ;tages Ofasymptotic regime describing the flows near the singularity
breakup. Experimental observations of the diverging flowsg, any breaking drop. Experimentally, this regime is isolated
require high-speed photography which only provides infor-p, \yorking with fluids that are both sufficiently viscous.
mation down to the micron level. Nevertheless, there is need” gy snap-off the typical axial and radial length scales
for an understanding of the formation, structure and scaling,e orders of magnitude smaller than the length scale of the
behavior of these singularities in order to classify how thes%oundary conditions suggesting that once the time dependen-
nonlinear.s.ysterr;s with free surface flows undergo topologigies of these radial and axial length scales are determined,
cal transitions” _Moreover, understanding the behavior e fio\ and profile shape, at successive times near the sin-
close to snap-off is essential for determining the accuracy Oéularity can be scaled onto universal cur¢egherefore, to
various reconnection methods used to break the drop i8pizin the flows near snap-off, one need only follow the
simulation$® which aim to capture the drop dynamics be- breakup until the profiles become self-simiid? 4 Alterna-

yond snap-off. Here we describe a set of experiments adye|y, the governing equations can be simplified by inserting

dressing the two-fluid drop snap-off problem in the regime ofy, ansat for the profiles near snap-off which incorporates
Stokes flow where all inertial terms can be neglectéd.

, X , the time dependencies. The reduced equations can then be
The Navier—Stokes equations for both the inner andy,\eq for the similarity solution numerically. In order to
outer.flwds along with the assumption of mcompresspﬂ_ﬂysowe the equations using the latter method, the time depen-
describe the approach to snap-off. The boundary condition§ence must previously be determined from either numerical
at the interface are that the velocity and tangential Stress?mulations, experiments, or dimensional analysis. The use
are continuous and that the difference in the normal stress i§¢ gimensional analysis to obtain the temporal scaling was
due to the product of the surface tension and twice the medfiscssed in Ref. 9. For the two-fluid drop snap-off problem
surface curvature. Each equation contains inertial, viscousy, ihe Stokes regime dimensional analysis suggests that the
only parameters on which the lengths can depend are the
dElectronic mail: icohen@midway.uchicago.edu viscosity ratio of the fluids\, the outer fluid viscosityy, the
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balances. Each of the Navier—Stokes equations contains

inertial and viscous stresses which must balance the
pressure gradients produced by the interface. There are
nine experimentally accessible combinations, though it
is possible that some of these combinations may not
have similarity solutions associated with them and may
simply correspond to regions where the drop is making

a transition from one regime to anoth@ef. 28. Fur-

thermore, not all of the terms corresponding to each of
INERTIAL the combinations need to contribute to the asymptotic

AND VISCOUS balance associated with the similarity solution. For ex-

A ample, the three drops at the top of the diagram which
correspond to drops dripping through air have similarity
solutions which do not incorporate the inertia of the

STOKES FLOW outer fluid in the asymptotic balance. The photographs

are shown for the regimes where a corresponding simi-

larity solution has been founftop three photographs
are taken from Shet al. (Ref. 16]. For the Stokes flow
regime we show drops with different cone angles for
viscosity ratios of 0.1, 1.1, and 1®om left to right.

The middle photograph is taken from Cohen al.

(Ref. 11).
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surface tensiory, and the time left to snap-off . The sim-  lations of Zhang and Listéf It also reports the breaking rate
plest combination of these parameters predicts that albf the drop and compares it with the fastest growing linear
lengths scale as*H(\)vy/7 where H is a dimensionless disturbance on a cylindrical thread calculated using Tomoti-
function depending on lambda. This linear time dependencka’s formula?’ This growth rate was recently shown to set a
for both the axial and radial length scales can be used aslamit on the rate at which the drop can bregk*
signature of the Stokes regime.

The_stabmty of a similarity solution can be analyzed in .all. CHARACTERIZATION OF THE FLUIDS AND
self-similar reference frame and depends on the Compet't'OBXPERIMENTAL DETAILS
between the growth rate of a perturbafibmnd the extra
source of advectioiwhich can move perturbations away The fluids used were mineral oil, silicone dpolydi-
from the point of snap-off associated with rescaling the methylsiloxane or PDMS and mixtures of glycerin and wa-
axes'®1°In experiments, noise due to thermal fluctuations orter. No surface chemistry was observed at the two-fluid in-
vibrations, which cannot be completely eliminated, can, interfaces even when the liquids remained in contact for peri-
some cases, destabilize the solutions in a dramatic fashion.ods longer than a month. The viscosity, was measured at

This paper presents data illustrating the dependence dbw shear rates using calibrated Cannon Ubbelohde viscom-
the observed self-similar solution for the drop snap-off prob-eters immersed in a Cannon constant temperature bath. In
lem in the Stokes regime on the size of the nozBethe  this manner the viscosity could be determined to within
surface tensiony, the density difference of the fluidgp, +5%. Glycerin can be diluted with water so that the resultant
and the viscosity ratio of the inner to outer fludd, We find  fluid has 0.0% <10 P2 Silicone oil is a polymer whose
that, as predicted by dimensional analysis, anlgffects the  viscosity increases with polymer length and is available with
shape of the similarity solution. Section Il describes the ex0.05< <600 P. Checks must be made to ensure that the
periments as well as the photographic and computationdluids are Newtonian when subjected to the shear rates typi-
methods used to obtain and analyze the data. Section IHal in the drop snap-off process. For 600 P silicone oil under
relates the procedures used to rescale the drop profiles astiear rates smaller than 50's » shows no variation as a
determine the dependence of the similarity solution on thdunction of the shear raf&.The shear rates observed in the
fluid parameters. Section IV presents the experimental resuldrop experiments which used silicone oils with €.
for the similarity solution and compares them with the simu-<600 P were well below 10 €. Therefore, none of our
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fluids would display a variation in the viscosity due to the Backlight ~ Maskon  Drop Camera
shear. In order to extend the viscosity range some experi- diffuser

ments were conducted in a refrigerated room kept at 4 °C at

which point the fluid parameters were measured under the

new conditions.

The densities of the mineral and silicone oils were mea- D
sured to be 0.8%70.01g/ml and 0.9Z0.01g/ml, respec-
tively. The densities of the water—glycerin mixtures range
between 1.26 and 1.00 g/ml which are, respectively, the den- (a)
sities of glycerin and water.

The surface tensiony, of the two-fluid interface was
determined using the pendant drop metid@which takes
advantage of the competition between the surface tension
and buoyant forces acting on a static drop hanging from a ‘
nozzle. The buoyant forces distort the drop from a spherical PPN \
shape. Measuring the distortion and density mismatch allows “ 7
a determination of the surface tension. Our implementation L
of this technique on water, toluene, and di-methylformamide
showed we were able to measure the surface tensions to (b) (c)
within +5%.

In the experiments, we let a liquid of viscosikyy drip FIG. 2. Diagram of the lighting configuratiofa) A _mask which is slightly
from a nozzle of diamete through a iquid of viscosity, {57 140 e rop = plced betueen e backht aud e crop. The rop
Typically, the heavier fluid dripped through the lighter fluid, the snap-off region for an experimental setup where the lighting configura-
however the roles of the fluids could be inverted. Here, theion does not use a mask. The neck region is difficult to distinguish from the
nozzle was inserted through the bottom of the tank contain2ackground(c) A close up region of a different drop photographed using a
ing the fluids and the lighter fluid then rose through themaSk' The snap-off region is now distinct.
heavier one. This simple reorientation allowed for a greater
range of viscosity ratios studied\{~1/\). Also, when the
same fluids and nozzle diameter were used this reorientaticsilowing the drop to focus light from large angles. The illu-
allowed us to test the drop snap-off dependence avhile ~ minated backlit region appears as a thin white line running
keeping all the other parameters in the problem constant. through the center of the imaged drop while the region be-

Snap-off was recorded using a variety of imaging tech-yond the backlight appears as a thick dark border. Since the
nigues. In most cases the drops broke slowly enough so thaiacklight is larger than the drop, the camera sees the focused
a 30 frame per second CCD video camera could be usedark border contrasted with the direct white background
When this was not the case we used a Kodak fast videtight. The resulting image is easy to analyze.
camera with a capture rate of up to 10000 frames per sec- However, for drops dripping through other fluids, the
ond. A Redlake 16 mm high speed film camera allowed us tindex of refraction mismatch can be orders of magnitude
capture up to 40 000 frames per second when greater resolamaller than the mismatch for water and air. The drop can no
tion was required. Finally, for the greatest amount of detailonger focus light from very large angles. The illuminated
an EG&G 15us pulse-width strobe light in conjunction with region appears as a much thicker white line running down
a medium-format camer@ 20 film) was used to photograph the center of the drop and the region beyond the backlight
the drop at various points in the snap-off process. now appears as a very thin dark border making it difficult to

When imaging, we used a slide projector to intenselyanalyze the drop profiles near snap-fgee Fig. 2b)]. We
illuminate a small (5 cx5cm) area of a piece of frosted overcame this difficulty by inverting the lighting configura-
plastic(taken from a notebogkplaced between the projector tion. A black maskwhich was drop shaped, bigger than the
and the drop. The plastic adequately diffused the light whileactual drop, and much smaller than the back)igvds placed
minimizing the amount of light intensity lost. With this con- on the plastic diffuser so that the direct light coming into the
figuration, the background appeared as a very bright yet diftamera was blockefsee Fig. 2a)]. Thus the background
fuse square regioibacklighy in an otherwise dark back- was dark. The dark madlafter being focused by the drpp
ground. appeared as a black line running through the middle of the

A drop acts as a lens which focuses light coming fromdrop while the white light which extended far away beyond
behind the drop into the camera. Therefore, the entire backhe mask now appeared as a thick white border. This border
ground(including the dark region beyond the backlighin  contrasted with the dark background making the drop inter-
be seen in the imaged drop. Dirdbiackground light which ~ face relatively easy to obserysee Fig. Z)].
does not go through the drop also enters the camera. Obtain- The images were transferred onto a PC where an edge
ing good images entails maximizing the contrast between th&racing IDL program tracked and recorded the points where
direct background light and the light coming from the borderthe derivative of the pixel intensity profile in the radial di-
of the drop. In drops dripping through air, the index of re-rection was extremized. The profiles were then smoothed in
fraction mismatch across the interface is lafgeound 0.3  order to reduce the scatter produced by the tracing scheme.
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FIG. 3. Plots of the rescaled experimental profiles. The insets depict the time dependence of the drop minimumg,;étjudhe arrows correspond to the
profiles chosen for display in the main figures. The main figures depict the experimentally determined self-similar ftH{djoas defined by Eql) for

(@ N=0.02,(b) A=0.8,(ci) A\=1.1,(d) A\=12, and(e) A =26. In(ci) the X’s and solid line mark the final simulation profile and numerical solution profile
calculated in Ref. 11. The rest of the figures only show experimental data. The solid circles correspond to the experimental profiles which dye temporal
closest to the point of snap-off while the open triangles correspond to the profiles farthest in time from the point of snap-off. The points whéhesthe pro
deviate from each other in the bulb regi@ositive {) indicate the transition from the self-similar regime to the spherical regime of the dmipshows a

plot of the residualsg; , from a comparison between the profile extracted from\thd..1 photograph shown in Fig. 1 and the numerical solution calculated

in Ref. 11. We find that in the similarity regime, the residuals are evenly distributed around zero.

The smoothed profiles were then superimposed onto thgith time, h,;, was used to rescale both axes. In accordance
original images and checked for accuracy. with the literaturé***we define the rescaled variables

The profiles were analyzed and checks were made to
verify that the flows were in the Stokes regime. The drop ~ H(&)=h(z,t)/hnin(t) and &= (z—z(hmin))/Nin(t).
minimum radius,h,,;;,, decreased linearly with time left to (1)
snap-off,t* (see insets in Fig.)3 Furthermore, the profile This definition fixes the minimum radius &=1 at /=0.
shapes were conicéFigs. 1 and Bindicating that the axial Determination ofz(h,,,,) was sometimes difficult due to the
length scales also decreased linearly in time as predicted latively flat slope of the profiles nedr0. Therefore, to
dimensional analysis for this regime. When the viscosity ofalign the minima, successive rescaled profiles were shifted in
the inner or outer fluid is not sufficiently high the dependen-the ¢ direction to minimize the cumulative deviation in
cies are not both linear. Sintg,;, decreases linearly in time, H(¢).
the radial velocity of the minimum radiusy,,,, remains Figure 3 shows a series of rescaled profiles for five sys-
constant. The Reynolds numbeh f.vnmine)/ 7, therefore  tems with different viscosity ratios. The insets show the
decreases with time. We measured the Reynolds number f@ihear dependence df,;,, ont*. The main figures show the
the flows and checked that it is less than 0.1 in the regiorelf-similar collapse of successive rescaled profiles. ¥or
where the analysis is performed. Finally, when drop profiles=1.1, taken from Ref. 11, superimposed are the self-similar
from simulations, which leave out inertia, and therefore onlyprofiles forh =1.0 found in simulation$x’s) and the corre-
model the Stokes regime, are compared with our experimensponding similarity solutiorgsolid line), which is computed

tal profiles we find excellent quantitative agreemént. numerically after inserting an ansatz, that incorporates the
time dependence, into the full equatididt is possible that

IIl. SIMILARITY ANALYSIS AND DETERMINATION OF tf'ls (t)evflmﬂfrewr']'ét””icc:‘lz‘e’gro%tthsr ﬂ?!?;hﬁastgzg?jﬁa)‘rious
RELEVANT PARAMETERS = 1.0 which are not pick Y .
reasons including solution stability and the use of a different

Testing for self-similar behavior entails figuring out iteration scheme to find the solutions. Solving for the nu-
whether the experimental drop profiles can be scaled ontmerically computed similarity solution at=1 is consider-
one another. We defireas the axial coordinate ant{z) as  ably easier than solving for the solution at oth&s, and to
the radial coordinate of the drop profile. As predicted bydate, the similarity solutions for the profiles with# 1 have
dimensional analysis, the minimum radids,;,, decreased not been numerically computed. This is due in part to the fact
linearly with the time left to snap-offf* (Fig. 3 insety.  that for the Stokes regime, solving for the similarity solution
Since all length scales were predicted to decrease linearlyas been just as difficult as simulating the full equations.
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However, as described above, solving for the similarity so- 10"
lutions could uncover the existence of other self-similar so-
lutions which satisfy the equations but are not picked out by
the numerical simulations. P el L e 1

For regions close enough to snap-off the profiles are
conical and we observe excellent scaling. Figuiai Bshows
a plot of the residuals from a comparison between the profile
extracted from thev=1.1 photograph in Fig. 1 and the nu- 10°2
merlcal solution calculate_d in Ref. 11. _Thls comparison D (cm)
yielded ay? value of 2.4 indicating that, in the similarity @
regime, the deviations between the experiment and theory
profiles are on the same order as the error associated with ]

. . . 10, i
making the experimental measurement. At large enough dis- ; f 2
tances from the snap-off point, the profiles must match onto F A=t
the spherical portion of the drop. For example, in the »'
=1.1 plot, the points where the first three experimental pro-
files deviate from the simulation, numerical solution, and 1072
final experimental profiles mark the transition from the self- 107" 10°
similar regime to the spherical regime of the drop. In the
unscaled variables this transition point does not change its
position. However, sinch,, is decreasing with time, in the FiG. 4. Plots of the slope@ S, and(b) S_ as a function of the nozzle
rescaled variables, the transition point moves towards largetfiameterD. The different symbols correspond to fluid systems with different
values of¢ ast* decreases. Similar transition points can beViscosity ratios\. For each fIl_Jid syst(_em with fixe)d both S, andS_ show

- . no dependence db. The horizontal lines running through the data sets are
observed in Figs. @) and 3e). quides to the eye.

A subtle feature for this asymptotic regime arises from
the interplay of the flows near the singularity with the non-
local fluid response from the Stokes flow. The nonlocal re-decreases the rate at which the perturbations grow; the ad-
sponse occurs because in the limit of zero Reynolds numbevection originating from the rescaling moves the perturba-
momentum from fluid regions that are far away can diffusetions away from the point of snap-off fast enough so that
and reach the snap-off region very quickly compared withthey do not significantly affect the similarity solution. Fur-
the time scales of the flows. Lister and Stdfeund that as  thermore, since the time dependence for the axial and radial
the drop collapses the far field conical regions retract due téength scales is the same, the drop maintains a consteiai
capillary forces and pull at the entire pinching region. Theto radia) aspect ratio and avoids the increase in instability
main effect of this nonlocal tug of war between the twomodes’ common in similarity solutions where this ratio in-
cones, is the advection of the entire snap-off region towardsreases with timé®
one of the cones with a velocity determined by the cone In addition to the self-similar collapse, Fig. 3 also shows
angles. This velocity is, in contrast to what occurs in thethat both the largeg,) and small §_) cone slopesrelative
other asymptotic regimes, asymptotically dominant over theo the drop axig which, respectively, correspond to the bulb
locally driven axial velocity ag* —0. However, forh=1,  and neck portions of the drop, depend on the viscosity ratio
Lister and Stone also found that this uniform advection A. These changing slopes capture the possible structural
leaves the self-similar structure of the solution intact. Figurechanges of the self-similar profiles and simplify the task of
3(a), 3(b), 3(d), and 3e) show that the self-similar structure tracking the changes in the profiles as a function of the fluid
remains intact even whexn+ 1. This result is expected since parameters. The cone slopes were measured by fitting the
the advection is due to regions that are orders of magnitudeaptured profiles which were temporally closest to the snap-
larger than the snap-off region and therefore cannot produceff point with a second-order polynomial whose origin was
flow gradients that have the same length scale as the snap-aféntered at the point of snap-off. The profile slope could then
region. In the rescaling of the experiment and simulationbe extracted from the coefficient of the linear term in the fit.
profiles this nonlocal velocity is absorbed #fh,,,). When  This procedure gave the same results as one which calculated
calculating the numerical solution, the advection velocitya moving tangent fit using 10 data points at a time and ex-
must be absorbed into the boundary conditions for the calcurapolated the asymptotic value of the tangent at the point of
lation. As with the similarity transformation described in snap-off. Eacts, andS_ data point in Figs. 4—8 represents
Cohent! once this velocity is absorbed the similarity form the mean of about 100 measured slopes.
remains intact. A similar procedure should apply to the simi-  Figures 4a) and 4b) plot the slopesS, andS_ as a
larity transformations when # 1. function of the nozzle diamet&. The measurements f&;,

We find that the sensitivity to perturbations, in both thewere conducted for 0.05ceD=<0.795cm. For nozzles
simulations and experiments, is much smaller for drops dripwith D>0.795 cm the drops would no longer uniformly wet
ping through a viscous fluid than for drops dripping throughthe nozzle tip. For nozzle with<0.05cm the drops were
air. The enhanced stability has been shtwo originate too small for the slopes to be measured accurately. The
from several causes: the presence of a viscous outer liquidmount of fluid comprising the neck region of the drop de-

(b) D (cm)
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FIG. 5. Plots of the slope&) S, and(b) S_ as a function of the surface FIG. 7. Plots of the slope&) S, and(b) S_ as a function of the viscosity

tensiony. Each symbol corresponds to fluid systems with approximately theratio . Each symbol corresponds to a fluid system which, within error,

same viscosity ratia (within 30%) and exactly the same nozzle diameler ~ keepsy, Ap, andD constant. For two of the fluid systems we have taken

For each of these, bo®, andS_ show no dependence anThe horizontal advantage of the simple reorientation of the apparatus shown in Fig. 4 which

lines running through the data sets are guides to the eye. keepsy, Ap, andD exactly constant. BotB, andS_ show a strong depen-
dence om\: S, «\02%-007 while S_ peaks neak =0.5.

creases dramatically with nozzle size. Therefore the experi-
mental ran 7 D<0.1 m) over which we wer . : .
ental range (0.795 cmb =0.159 cm) ove chwe were on the surface tensiofp and density mismatcAp. In order

able to measure th&_ slopes was even smaller. The data : -
. : . to changey, different sets of liquids must be used. The use of
points correspond to fluid systems which have exactly the ) .
: S surfactants was ruled out since the surface flows during snap-
same values of\, y, and Ap. As predicted, the similarity : .
. ~ off would produce concentration gradients of the surfactants
solution shows no dependence bn . .
and the drop surface tension would not be uniform. Unfortu-
nately, using two different sets of fluids makes it difficult to
test independently for the effects of surface tensjoand
10’ density mismatchAp. In Figs. 5a) and %b) we plot the
slopesS, and S_ for fluid systems which have approxi-
mately the same value of as a function of the surface ten-
sion y. Figures 6a) and Gb) then plot the same data as a
function of the density mismatchp. We find that, within
error, Ap and y do not affect the slopes of the conical pro-
i files. While the inertial terms are absent in the Stokes equa-
tions and are therefore not expected to contribute to the
flows, the pressure gradient term due to surface tension is
present and in fact determines the structure and scaling of the
solutions. The lack of slope dependenceyooan be under-
stood by taking account of dimensional considerations. The
slopes are dimensionless humbers and must scale with other
| dimensionless combinations of the fluid parameters. Since it
is impossible to form a dimensionless number usign
combination withz and\ the surface tension cannot affect
the value of the slopés.
() Finally, we test the dependence of the slopes on the vis-
cosity ratio\. Figures 7a) and 1{b) show a plot of the slope
FIG. 6. Plots of the slope&@) S, and(b) S_ as a function of the density as a function of\ for four systemgdifferent symbolg each
mismatchAp. The fluid systems used are the same as those in Fig. 8. Eacborresponding to a fixed combination afAp, andD (which
symbol corresponds to fluid systems with approximately the same viscosit&iﬁerS from pair to pair. For two of these systems we have
ratio A, and exactly the same nozzle diameferFor these sets of fluids, P pa. . . . Yy
taken advantage of the simple reorientation of the apparatus

both S, andS_ show no dependence dp. The horizontal lines running ) 7 g
through the data sets are guides to the eye. described in Sec. Il which allows us to keep the valueb of

Next, we test the dependence of the self-similar profiles

102 : :
107" 10°
Ap (g/em®)
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findings are consistent with the numerical simulations of the
full Stokes equations by Zhang and Lister the results of
which are overlaid in the plot¥.

The trend in the simulated data indicates a fall-off from
the power-law dependence at low while the experimental
data do not exhibit this behavior. We note that e 0.02
data in Fig. 8a) display the expected linear time dependence
for the minimum radius and show collapse for the rescaled
profiles. Furthermore, the difference between the simulated
profiles and experimental profiles can not be attributed to the
effects of surfactants. As shown in Fig. 5, the surface tension
does not affect the cone angles. Also, since the experimental
procedure is the same for all of the snap-off experiments, the

* effects of the surfactants would not manifest themselves only
1 in the low \ regime. Therefore, the deviation in the trends
1072 Lt i i between our experiments and the simulatfémemains un-
102 10" 10° 10! 107 resolved. We note that th®, power-law dependence is not
(b) A only asymptotic in\ but goes throughh=1 as well. The
origin of this dependence is still not understood.

FIG. 8. Plots of the slope®) S, and(b) S_ as a function of the viscosity Both the numerical and experimental global trends are in
ratio A for the entire(all the parameters are allowed to vagxperimental

data setsolid circle3 and the simulations of Zhang and ListeK 's). The disagreement with the lubrication approximation scaling ar-
simulations show good agreement with the experimental data except for thguments of Lister and Storfayhich predict that both slopes
S, data at\<1. The dashed line ifa) is a power law fit to the experimental scale as}\fo-s' These Scallng predlctlons involve gueSS|ng
S, data and has a slope of 0:2.07. TheS. data(b) peak nean=05 i terms in the Laplacian of the velocity fields for the
and the dashed curve correspondsLto', wherelL is the linearly most | . .
unstable wavelength for a cylinder of viscous fluid surrounded by anothefNN€r and outer fluid balance the pressure gradients due to
fluid. S_ slopes forx =26, 0.002, 0.004 could not be distinguished from the interface. The disagreement with experiment indicates
lines having zero slope and were omitted. Data for the plots were taken fronfhat the veIocity flows in the physical system are different
Cohenet al. (Ref. 11 and Zhanget al. (Ref. 14. . . . . . .

from those in the lubrication hypothesis. Since a different
flow geometry necessitates balancing a different set of La-
placian components, very differeit dependencies for the
cone slopes can arise. For example, a scenario where the

Furthermore, each pair of data points is consistent with inner fluid velocities in the bulb region are all aligned along
power-law dependence oh with an exponent of 0.22 the radial directior(roughly corresponding to a 90° reorien-
+0.07. For theS_ slopes we find that as is increased, the tation of the Lister and Stone lubrication flowsredicts that
~U.U/. — ’ +0.5 H

data sets show an increase in slope for pairs probing regiori3® Pulb cone slope scales@s=A "= Clearly, neither flow

with A<0.5 and a decrease in slope for pairsSf data approximation captures the proper scaling dependence indi-
probing regions with > 0.5. cating that the actual system incorporates some combination

Within error [and with the exception of the point at of these flows the character of which may beependent?

=0.002(Ref. 27] the analysis performed on both the Snap_However, these extreme flow scenarios can be useful in set-
off event near the nozzle and the snap-off event near the bulf?d limits on the slope scaling dependence which for viscous
(Fig. 1) lead to the same results. This agreement implies theifop snap-off is restricted by this argument to lie between

the results are robust and independent of small variations ih - andrTh _ _
the surrounding flows. Zhang and Listéf* point out that for theS_ slopes the

shift to long wavelengtivery shallow conégsat large and
small \ is reminiscent of the shifts seen in the Tomotika’'s
stability analysis of a liquid thread.In his analysis of non-
Having determined that near snap-off the profiles ardocal perturbations applied to cylindrical threads, the wave-
self-similar and thah is the only fluid parameter which af- length of the most unstable perturbation diverges Aas
fects the structure of these profiles, we map out the profile~0.°. Furthermore, Tomotika showed that the maximum
dependence for both the shallow cdbe and steep cons,  instability takes place at=0.28(close to the peak in th®_
as a function of\. Figures 8a) and 8b) reproduce plots datd for a perturbation whose wavelength is 10.7 times the
(taken from Coheret al) of the entire data set showing the radius of the thread. If we take the ratio of the cylinder radius
cone slopesS, andS_ dependencies oN. The entireS, over this wavelength as the slope of our cone we can sys-
data set has a power-law depender®er\?2%°097 TheS_  tematically obtain a cone slope at each valuexcds was
data set peaks near=0.5 and decreases as—0g. At  done by Zhang and Listéf.At A =0.28 this analysis gives a
A=26, 0.002, 0.004 th&_ slopes were small and the com- value of 0.9 for the cone slope which corresponds well with
puter could not distinguish them from lines having zerothe data. Figure 8 shows a comparison of the experiment and
slope. With the exception of the data f8r. at A<1 these simulationS_ data with a plot of the inverse of the linearly

v, and Ap exactly the same while varying only. We find
that as\ is increasedS, increases for each pair of points.

IV. RESULTS AND DISCUSSION
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for profiles that are not cylindrical and for perturbations that
are local is needed in order to improve these arguments.
Finally, comparing the solutions for very viscous drops
falling in air with very viscous drops falling through viscous
fluids, we find that when we extrapolate our results to the
limit where the inside fluid viscosity becomes infinite the
w " - profiles look different. In the case of a very viscous drop
10 107 100 10" 107 dripping through air, such an extrapolation suggests that the
A profiles near snap-off are symmetric about the point of
FIG. 9. Plot of the rescaled experimentalef. 11 (solid circles and nu-  Snap-off® (as seen in the viscous thread photograph of Fig.
merical(Ref. 14 (X’s) minimum radiusH(0O\) as a function of the viscos-  1). For the case of a very viscous drop dripping through a
ity ratio A and the result of the stability argume(solid line) presented by  \iscous material this extrapolation suggests that the drop
Cohenet al. (Ref. 11). o . .
profile is asymmetric about the point of snap-{figs. 3e),
8(a), and &b)]. This is contrary to what one might naively
assume since, in this limit, the inner fluid is much more
most unstable wavelength for a fluid thread surrounded byiscous than the outer fluid or the air and therefore should
another fluid. The prediction matches the data over the rerot be affected by the outside medidhHowever, as Zhang
gion between 0.02\ < 12, however, beyond this region the and Lister point odf' the external viscous dissipation in the
measurements need to be performed more carefully to seetivo-fluid problem must remain comparable to the internal
the predictions track the decrease in sl¢peall the slopes dissipation even at very large lambda. Therefore, even in the
at\=0.002, 0.004, and 26 could not be distinguished fromlimit of A —co the parametek is not sufficient for defining
zero. the shape of the profile. Instead, one must determine both the
In addition to measuring the slopes of the self-similarReynolds number of the flow&r equivalently the correct
profiles, the breaking rate of the drop at the minimum radiusassymptotic regime and the viscosity ratio\ in order to
dihpmin can be measured. We recall that dimensional analysigniquely determine the drop profile shape. The same argu-
predicts that all lengths scale asH(Z,\)vy/». Here the ments hold for the limiik — 0.
function H from dimensional analysis has been combined
with the self-similar universal functioH into a function that
depends on both the rescaled axial coordiriadad the vis- V. CONCLUSIONS
cosity ratio . For each viscosity ratio\, the functionH We have shown that for a drop dripping through an outer
provides the prefactor for the time dependence of the evolufluid where the flows are in the Stokes regime, the experi-
tion of a profile point at a positiod. The point of minimum mental profiles near snap-off for 0.8A <26 are self-
radius is easily tracked and scales’asl(0\) v/ . Figure 9  similar. These self-similar profile shapes are conical and for
shows experimental measurementdHgD\ ). While most  the case. =1 agree with the shapes found in the simulations
of the experimental data can be fit with a power lawof Stone and Listérand the similarity solution computed in
H(O\) o\ ~053005 there s a significant trend with an over- Cohenet al!* Furthermore, we have experimentally deter-
all negative curvature. The maximum linear growth rate,mined that changes in the self-similar solution manifest
Q(rg,\), of a perturbation introduced on a cylinder of ra- themselves as changes in the neck cone sl&eand bulb
dius ry surrounded by another fluid(calculated by cone slopesS, (Figs. 1 and 3 We find no dependence of
Tomotik&®) was showr to set a limit on the rate at which these cone slopes on the nozzle diamBtethe density mis-
hmin Can decrease with time resulting in the upper bound matchAp, and the surface tensiop(Figs. 4—6. We do find
. a strong dependence of the cone slopes on the ratio of the
Q(Pmin,N) > dibmin /A= 17 inner to outer fluid viscosity\ (Fig. 7). For 0.002\ <26,
Using Tomotika’s formula for Q(hy,,\) with hy,, theS, slopes scale as®??*%%7 while the S_ slopes peak
=t*H(O,\) y/ 5, this equation turns into an upper bound for aroundA =0.5 and decrease at the extreineThe Stokes-
H(O,\). The solid line in Fig. 9 corresponds to this upper flow simulations of Zhang and Lister show the same depen-
bound. All of the data obey the bound and for systems withdence with the exception of the dataxak1 where they find
0.08<A <12 the agreement is nearly exact indicating that thea much more rapid decrease3n . In both the experiments
drop is breaking as fast as it can. Why these drops choose #nd simulations the trends in ttf® and S, slopes are in
break as fast as possible is still unclear. The deviations atontradiction to the predictions of the-1D lubrication ap-
extremeN’s are surprising since the neck profiles are moreproximation model. However, these types of approximations
cylindrical than those at’s close to unity and should there- can be used to set limits on the slope scaling dependence
fore correspond more closely with this type of stability which for this problem is restricted to lie betwegn! and
analysis. Another discrepancy is that the perturbations apx 1.
plied by Tomotika are nonlocal, single wavelength, and span  We have also measured the breaking rate of the drops at
the entire cylinder. The perturbations in the experiment araifferent\ and found that the data for the prefactd(O\)
always local perturbations or spatially confined bumps andaan be fit with a power lavid (0,1 )\ ~ %5309 pyt that the
may therefore exhibit different growth rates. Clearly, a de-data have an overall negative curvat(ifeg. 9). The data for
tailed understanding of how the Tomotika predictions changehe breaking rate are compared with predictions from a

H(O,)

108 t p
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