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Testing for scaling behavior dependence on geometrical and fluid
parameters in the two fluid drop snap-off problem

Itai Cohena) and Sidney R. Nagel
James Franck Institute, University of Chicago, Chicago, Illinois 60637

~Received 29 June 2000; accepted 20 July 2001!

We present experimental results on the snap-off dynamics of a drop with viscositylh dripping
through a fluid of viscosityh. This paper focuses on the Stokes regime where both the inner and
outer fluid viscous stresses are balanced by the pressure gradients arising from the interfacial
curvature. We track the time dependence of the drop profiles near snap-off and find that successive
profiles can be rescaled onto a single curve. We explore the dependence of this scaling on the nozzle
diameter, surface tension, density mismatch, and viscosity ratiol. We find that onlyl affects the
rescaled profile. Finally we investigate the dependence of the breaking rate onl.
© 2001 American Institute of Physics.@DOI: 10.1063/1.1409369#
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I. INTRODUCTION

When a drop snaps off~Fig. 1! its minimum radius
shrinks to zero in a finite amount of time. The pressure
erted by the interface is inversely proportional to the mi
mum radius of the drop and becomes singular as the d
approaches snap-off.1 Near such a singularity, the viscou
stresses and velocity flow fields in the governing Navie
Stokes equations often diverge as well, while the axial a
radial length scales describing the problem become van
ingly small.2 When the minimum drop radius reaches m
lecular scales an alternative atomistic description must
used.3

Investigating drop breakup is a difficult task. The shrin
ing length scales require that simulations use increasin
finer grids to capture the snap-off details making it prohi
tive to simulate the full equations during the final stages
breakup. Experimental observations of the diverging flo
require high-speed photography which only provides inf
mation down to the micron level. Nevertheless, there is n
for an understanding of the formation, structure and sca
behavior of these singularities in order to classify how th
nonlinear systems with free surface flows undergo topolo
cal transitions.4–7 Moreover, understanding the behavi
close to snap-off is essential for determining the accurac
various reconnection methods used to break the drop
simulations1,8 which aim to capture the drop dynamics b
yond snap-off. Here we describe a set of experiments
dressing the two-fluid drop snap-off problem in the regime
Stokes flow where all inertial terms can be neglected.9–14

The Navier–Stokes equations for both the inner a
outer fluids along with the assumption of incompressibil
describe the approach to snap-off. The boundary condit
at the interface are that the velocity and tangential stre
are continuous and that the difference in the normal stres
due to the product of the surface tension and twice the m
surface curvature. Each equation contains inertial, visco

a!Electronic mail: icohen@midway.uchicago.edu
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and pressure-gradient terms which must balance. As a d
pinches-off, it moves through different asymptotic regim
within which a subset of terms from the full equations p
marily describes the flow.9,15 Numerically and theoretically
accessing different regimes entails including or exclud
relevant terms in the governing equations. Experimenta
the fluid parameters are tuned so that the relevant asymp
regime manifests itself in the experimentally accessi
length scales of 1 cm to 1mm. Figure 1 expands and reo
ganizes Lister and Stone’s diagram9 to display the combina-
tions of the stresses due to both the inside and outside
that are experimentally accessible. Also shown
photographs16 of the profiles near snap-off for the regime
where a corresponding similarity solution has been found

Lister and Stone9 showed that, assuming molecula
scales are not reached first, the Stokes regime is the
asymptotic regime describing the flows near the singula
for any breaking drop. Experimentally, this regime is isolat
by working with fluids that are both sufficiently viscous.

Near snap-off the typical axial and radial length sca
are orders of magnitude smaller than the length scale of
boundary conditions suggesting that once the time depen
cies of these radial and axial length scales are determi
the flow and profile shape, at successive times near the
gularity can be scaled onto universal curves.2 Therefore, to
obtain the flows near snap-off, one need only follow t
breakup until the profiles become self-similar.9,13,14Alterna-
tively, the governing equations can be simplified by insert
an ansatz for the profiles near snap-off which incorpora
the time dependencies. The reduced equations can the
solved for the similarity solution numerically. In order t
solve the equations using the latter method, the time dep
dence must previously be determined from either numer
simulations, experiments, or dimensional analysis. The
of dimensional analysis to obtain the temporal scaling w
discussed in Ref. 9. For the two-fluid drop snap-off proble
in the Stokes regime dimensional analysis suggests tha
only parameters on which the lengths can depend are
viscosity ratio of the fluidsl, the outer fluid viscosityh, the
3 © 2001 American Institute of Physics
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FIG. 1. Matrix of the various combinations of stres
balances. Each of the Navier–Stokes equations cont
inertial and viscous stresses which must balance
pressure gradients produced by the interface. There
nine experimentally accessible combinations, though
is possible that some of these combinations may
have similarity solutions associated with them and m
simply correspond to regions where the drop is maki
a transition from one regime to another~Ref. 28!. Fur-
thermore, not all of the terms corresponding to each
the combinations need to contribute to the asympto
balance associated with the similarity solution. For e
ample, the three drops at the top of the diagram wh
correspond to drops dripping through air have similar
solutions which do not incorporate the inertia of th
outer fluid in the asymptotic balance. The photograp
are shown for the regimes where a corresponding si
larity solution has been found@top three photographs
are taken from Shiet al. ~Ref. 16!#. For the Stokes flow
regime we show drops with different cone angles f
viscosity ratios of 0.1, 1.1, and 10~from left to right!.
The middle photograph is taken from Cohenet al.
~Ref. 11!.
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surface tensiong, and the time left to snap-offt* . The sim-
plest combination of these parameters predicts that
lengths scale ast* H(l)g/h where H is a dimensionless
function depending on lambda. This linear time depende
for both the axial and radial length scales can be used
signature of the Stokes regime.

The stability of a similarity solution can be analyzed in
self-similar reference frame and depends on the compet
between the growth rate of a perturbation17 and the extra
source of advection~which can move perturbations awa
from the point of snap-off! associated with rescaling th
axes.18,19In experiments, noise due to thermal fluctuations
vibrations, which cannot be completely eliminated, can,
some cases, destabilize the solutions in a dramatic fashio16

This paper presents data illustrating the dependenc
the observed self-similar solution for the drop snap-off pro
lem in the Stokes regime on the size of the nozzle,D, the
surface tension,g, the density difference of the fluids,Dr,
and the viscosity ratio of the inner to outer fluid,l. We find
that, as predicted by dimensional analysis, onlyl affects the
shape of the similarity solution. Section II describes the
periments as well as the photographic and computatio
methods used to obtain and analyze the data. Section
relates the procedures used to rescale the drop profiles
determine the dependence of the similarity solution on
fluid parameters. Section IV presents the experimental res
for the similarity solution and compares them with the sim
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lations of Zhang and Lister.14 It also reports the breaking rat
of the drop and compares it with the fastest growing line
disturbance on a cylindrical thread calculated using Tom
ka’s formula.20 This growth rate was recently shown to set
limit on the rate at which the drop can break.11,14

II. CHARACTERIZATION OF THE FLUIDS AND
EXPERIMENTAL DETAILS

The fluids used were mineral oil, silicone oil~polydi-
methylsiloxane or PDMS!, and mixtures of glycerin and wa
ter. No surface chemistry was observed at the two-fluid
terfaces even when the liquids remained in contact for p
ods longer than a month. The viscosity,h, was measured a
low shear rates using calibrated Cannon Ubbelohde visc
eters immersed in a Cannon constant temperature bath
this manner the viscosity could be determined to with
65%. Glycerin can be diluted with water so that the result
fluid has 0.01<h<10 P.21 Silicone oil is a polymer whose
viscosity increases with polymer length and is available w
0.05<h<600 P. Checks must be made to ensure that
fluids are Newtonian when subjected to the shear rates t
cal in the drop snap-off process. For 600 P silicone oil un
shear rates smaller than 50 s21, h shows no variation as a
function of the shear rate.22 The shear rates observed in th
drop experiments which used silicone oils with 0.6<h
<600 P were well below 10 s21. Therefore, none of our
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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3535Phys. Fluids, Vol. 13, No. 12, December 2001 Scaling in the two fluid drop snap-off problem
fluids would display a variation in the viscosity due to t
shear. In order to extend the viscosity range some exp
ments were conducted in a refrigerated room kept at 4 °C
which point the fluid parameters were measured under
new conditions.

The densities of the mineral and silicone oils were m
sured to be 0.8760.01 g/ml and 0.9760.01 g/ml, respec-
tively. The densities of the water–glycerin mixtures ran
between 1.26 and 1.00 g/ml which are, respectively, the d
sities of glycerin and water.

The surface tension,g, of the two-fluid interface was
determined using the pendant drop method23,24 which takes
advantage of the competition between the surface ten
and buoyant forces acting on a static drop hanging from
nozzle. The buoyant forces distort the drop from a spher
shape. Measuring the distortion and density mismatch all
a determination of the surface tension. Our implementa
of this technique on water, toluene, and di-methylformam
showed we were able to measure the surface tension
within 65%.

In the experiments, we let a liquid of viscositylh drip
from a nozzle of diameterD through a liquid of viscosityh.
Typically, the heavier fluid dripped through the lighter flui
however the roles of the fluids could be inverted. Here,
nozzle was inserted through the bottom of the tank cont
ing the fluids and the lighter fluid then rose through t
heavier one. This simple reorientation allowed for a grea
range of viscosity ratios studied (l→1/l). Also, when the
same fluids and nozzle diameter were used this reorienta
allowed us to test the drop snap-off dependence onl while
keeping all the other parameters in the problem constan

Snap-off was recorded using a variety of imaging te
niques. In most cases the drops broke slowly enough so
a 30 frame per second CCD video camera could be u
When this was not the case we used a Kodak fast vi
camera with a capture rate of up to 10 000 frames per
ond. A Redlake 16 mm high speed film camera allowed u
capture up to 40 000 frames per second when greater re
tion was required. Finally, for the greatest amount of de
an EG&G 15ms pulse-width strobe light in conjunction wit
a medium-format camera~120 film! was used to photograp
the drop at various points in the snap-off process.

When imaging, we used a slide projector to intens
illuminate a small (5 cm35 cm) area of a piece of froste
plastic~taken from a notebook! placed between the projecto
and the drop. The plastic adequately diffused the light wh
minimizing the amount of light intensity lost. With this con
figuration, the background appeared as a very bright yet
fuse square region~backlight! in an otherwise dark back
ground.

A drop acts as a lens which focuses light coming fro
behind the drop into the camera. Therefore, the entire ba
ground~including the dark region beyond the backlight! can
be seen in the imaged drop. Direct~background! light which
does not go through the drop also enters the camera. Ob
ing good images entails maximizing the contrast between
direct background light and the light coming from the bord
of the drop. In drops dripping through air, the index of r
fraction mismatch across the interface is large~around 0.3!
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allowing the drop to focus light from large angles. The ill
minated backlit region appears as a thin white line runn
through the center of the imaged drop while the region
yond the backlight appears as a thick dark border. Since
backlight is larger than the drop, the camera sees the focu
dark border contrasted with the direct white backgrou
light. The resulting image is easy to analyze.

However, for drops dripping through other fluids, th
index of refraction mismatch can be orders of magnitu
smaller than the mismatch for water and air. The drop can
longer focus light from very large angles. The illuminate
region appears as a much thicker white line running do
the center of the drop and the region beyond the backl
now appears as a very thin dark border making it difficult
analyze the drop profiles near snap-off@see Fig. 2~b!#. We
overcame this difficulty by inverting the lighting configura
tion. A black mask~which was drop shaped, bigger than th
actual drop, and much smaller than the backlight! was placed
on the plastic diffuser so that the direct light coming into t
camera was blocked@see Fig. 2~a!#. Thus the background
was dark. The dark mask~after being focused by the drop!
appeared as a black line running through the middle of
drop while the white light which extended far away beyo
the mask now appeared as a thick white border. This bo
contrasted with the dark background making the drop in
face relatively easy to observe@see Fig. 2~c!#.

The images were transferred onto a PC where an e
tracing IDL program tracked and recorded the points wh
the derivative of the pixel intensity profile in the radial d
rection was extremized. The profiles were then smoothe
order to reduce the scatter produced by the tracing sche

FIG. 2. Diagram of the lighting configuration.~a! A mask which is slightly
larger than the drop is placed between the backlight and the drop. The
then focuses light from beyond the mask into the camera.~b! A close up of
the snap-off region for an experimental setup where the lighting config
tion does not use a mask. The neck region is difficult to distinguish from
background.~c! A close up region of a different drop photographed using
mask. The snap-off region is now distinct.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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FIG. 3. Plots of the rescaled experimental profiles. The insets depict the time dependence of the drop minimum radiushmin(t* ). The arrows correspond to th
profiles chosen for display in the main figures. The main figures depict the experimentally determined self-similar functionsH(z) as defined by Eq.~1! for
~a! l50.02,~b! l50.8, ~ci! l51.1, ~d! l512, and~e! l526. In ~ci! the 3’s and solid line mark the final simulation profile and numerical solution pro
calculated in Ref. 11. The rest of the figures only show experimental data. The solid circles correspond to the experimental profiles which are tly
closest to the point of snap-off while the open triangles correspond to the profiles farthest in time from the point of snap-off. The points where thfiles
deviate from each other in the bulb region~positivez! indicate the transition from the self-similar regime to the spherical regime of the drops.~cii! shows a
plot of the residuals,d i , from a comparison between the profile extracted from thel51.1 photograph shown in Fig. 1 and the numerical solution calcula
in Ref. 11. We find that in the similarity regime, the residuals are evenly distributed around zero.
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The smoothed profiles were then superimposed onto
original images and checked for accuracy.

The profiles were analyzed and checks were made
verify that the flows were in the Stokes regime. The dr
minimum radius,hmin , decreased linearly with time left to
snap-off, t* ~see insets in Fig. 3!. Furthermore, the profile
shapes were conical~Figs. 1 and 3! indicating that the axial
length scales also decreased linearly in time as predicte
dimensional analysis for this regime. When the viscosity
the inner or outer fluid is not sufficiently high the depende
cies are not both linear. Sincehmin decreases linearly in time
the radial velocity of the minimum radius,vhmin, remains
constant. The Reynolds number, (hminvhminr)/h, therefore
decreases with time. We measured the Reynolds numbe
the flows and checked that it is less than 0.1 in the reg
where the analysis is performed. Finally, when drop profi
from simulations, which leave out inertia, and therefore o
model the Stokes regime, are compared with our experim
tal profiles we find excellent quantitative agreement.14

III. SIMILARITY ANALYSIS AND DETERMINATION OF
RELEVANT PARAMETERS

Testing for self-similar behavior entails figuring o
whether the experimental drop profiles can be scaled o
one another. We definez as the axial coordinate andh(z) as
the radial coordinate of the drop profile. As predicted
dimensional analysis, the minimum radius,hmin , decreased
linearly with the time left to snap-off,t* ~Fig. 3 insets!.
Since all length scales were predicted to decrease line
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with time, hmin was used to rescale both axes. In accorda
with the literature9,11,14we define the rescaled variables

H~z!5h~z,t !/hmin~ t ! and z5~z2z~hmin!!/hmin~ t !.
~1!

This definition fixes the minimum radius atH51 at z50.
Determination ofz(hmin) was sometimes difficult due to th
relatively flat slope of the profiles nearz50. Therefore, to
align the minima, successive rescaled profiles were shifte
the z direction to minimize the cumulative deviation i
H(z).

Figure 3 shows a series of rescaled profiles for five s
tems with different viscosity ratiosl. The insets show the
linear dependence ofhmin on t* . The main figures show the
self-similar collapse of successive rescaled profiles. Fol
51.1, taken from Ref. 11, superimposed are the self-sim
profiles forl51.0 found in simulations~3’s! and the corre-
sponding similarity solution~solid line!, which is computed
numerically after inserting an ansatz, that incorporates
time dependence, into the full equations.11 It is possible that
this technique will uncover other similarity solutions19 at l
51.0 which are not picked out by the simulations for vario
reasons including solution stability and the use of a differ
iteration scheme to find the solutions. Solving for the n
merically computed similarity solution atl51 is consider-
ably easier than solving for the solution at otherl’s, and to
date, the similarity solutions for the profiles withlÞ1 have
not been numerically computed. This is due in part to the f
that for the Stokes regime, solving for the similarity solutio
has been just as difficult as simulating the full equatio
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp



so
so
b

ar

fi
-
on
y
o
w
d
n

ro
nd
lf
he

rg
be

m
n
re
b
s
it

e
he
o
rd
n
he
th

n
re
e
e
ud
u
p-
io

ity
lc
in
m

he
rip
gh

qu

ad-
a-
at

r-
dial

lity
-

ws

lb
tio

ural
of
uid
the

ap-
as
en

fit.
lated
ex-
t of
ts

et

The
e-

nt

are

3537Phys. Fluids, Vol. 13, No. 12, December 2001 Scaling in the two fluid drop snap-off problem
However, as described above, solving for the similarity
lutions could uncover the existence of other self-similar
lutions which satisfy the equations but are not picked out
the numerical simulations.

For regions close enough to snap-off the profiles
conical and we observe excellent scaling. Figure 3~cii! shows
a plot of the residuals from a comparison between the pro
extracted from thel51.1 photograph in Fig. 1 and the nu
merical solution calculated in Ref. 11. This comparis
yielded ax2 value of 2.4 indicating that, in the similarit
regime, the deviations between the experiment and the
profiles are on the same order as the error associated
making the experimental measurement. At large enough
tances from the snap-off point, the profiles must match o
the spherical portion of the drop. For example, in thel
51.1 plot, the points where the first three experimental p
files deviate from the simulation, numerical solution, a
final experimental profiles mark the transition from the se
similar regime to the spherical regime of the drop. In t
unscaled variables this transition point does not change
position. However, sincehmin is decreasing with time, in the
rescaled variables, the transition point moves towards la
values ofz as t* decreases. Similar transition points can
observed in Figs. 3~d! and 3~e!.

A subtle feature for this asymptotic regime arises fro
the interplay of the flows near the singularity with the no
local fluid response from the Stokes flow. The nonlocal
sponse occurs because in the limit of zero Reynolds num
momentum from fluid regions that are far away can diffu
and reach the snap-off region very quickly compared w
the time scales of the flows. Lister and Stone9 found that as
the drop collapses the far field conical regions retract du
capillary forces and pull at the entire pinching region. T
main effect of this nonlocal tug of war between the tw
cones, is the advection of the entire snap-off region towa
one of the cones with a velocity determined by the co
angles. This velocity is, in contrast to what occurs in t
other asymptotic regimes, asymptotically dominant over
locally driven axial velocity ast* →0. However, forl51,
Lister and Stone9 also found that this uniform advectio
leaves the self-similar structure of the solution intact. Figu
3~a!, 3~b!, 3~d!, and 3~e! show that the self-similar structur
remains intact even whenlÞ1. This result is expected sinc
the advection is due to regions that are orders of magnit
larger than the snap-off region and therefore cannot prod
flow gradients that have the same length scale as the sna
region. In the rescaling of the experiment and simulat
profiles this nonlocal velocity is absorbed inz(hmin). When
calculating the numerical solution, the advection veloc
must be absorbed into the boundary conditions for the ca
lation. As with the similarity transformation described
Cohen,11 once this velocity is absorbed the similarity for
remains intact. A similar procedure should apply to the sim
larity transformations whenlÞ1.

We find that the sensitivity to perturbations, in both t
simulations and experiments, is much smaller for drops d
ping through a viscous fluid than for drops dripping throu
air. The enhanced stability has been shown25 to originate
from several causes: the presence of a viscous outer li
Downloaded 22 Feb 2003 to 128.103.60.225. Redistribution subject to A
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decreases the rate at which the perturbations grow; the
vection originating from the rescaling moves the perturb
tions away from the point of snap-off fast enough so th
they do not significantly affect the similarity solution. Fu
thermore, since the time dependence for the axial and ra
length scales is the same, the drop maintains a constant~axial
to radial! aspect ratio and avoids the increase in instabi
modes17 common in similarity solutions where this ratio in
creases with time.16

In addition to the self-similar collapse, Fig. 3 also sho
that both the large (S1) and small (S2) cone slopes~relative
to the drop axis!, which, respectively, correspond to the bu
and neck portions of the drop, depend on the viscosity ra
l. These changing slopes capture the possible struct
changes of the self-similar profiles and simplify the task
tracking the changes in the profiles as a function of the fl
parameters. The cone slopes were measured by fitting
captured profiles which were temporally closest to the sn
off point with a second-order polynomial whose origin w
centered at the point of snap-off. The profile slope could th
be extracted from the coefficient of the linear term in the
This procedure gave the same results as one which calcu
a moving tangent fit using 10 data points at a time and
trapolated the asymptotic value of the tangent at the poin
snap-off. EachS1 andS2 data point in Figs. 4–8 represen
the mean of about 100 measured slopes.

Figures 4~a! and 4~b! plot the slopesS1 and S2 as a
function of the nozzle diameterD. The measurements forS1

were conducted for 0.05 cm<D<0.795 cm. For nozzles
with D.0.795 cm the drops would no longer uniformly w
the nozzle tip. For nozzle withD,0.05 cm the drops were
too small for the slopes to be measured accurately.
amount of fluid comprising the neck region of the drop d

FIG. 4. Plots of the slopes~a! S1 and ~b! S2 as a function of the nozzle
diameterD. The different symbols correspond to fluid systems with differe
viscosity ratiosl. For each fluid system with fixedl bothS1 andS2 show
no dependence onD. The horizontal lines running through the data sets
guides to the eye.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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creases dramatically with nozzle size. Therefore the exp
mental range (0.795 cm<D<0.159 cm) over which we were
able to measure theS2 slopes was even smaller. The da
points correspond to fluid systems which have exactly
same values ofl, g, and Dr. As predicted, the similarity
solution shows no dependence onD.

FIG. 5. Plots of the slopes~a! S1 and ~b! S2 as a function of the surface
tensiong. Each symbol corresponds to fluid systems with approximately
same viscosity ratiol ~within 30%! and exactly the same nozzle diameterD.
For each of these, bothS1 andS2 show no dependence ong. The horizontal
lines running through the data sets are guides to the eye.

FIG. 6. Plots of the slopes~a! S1 and ~b! S2 as a function of the density
mismatchDr. The fluid systems used are the same as those in Fig. 8. E
symbol corresponds to fluid systems with approximately the same visco
ratio l, and exactly the same nozzle diameterD. For these sets of fluids
both S1 andS2 show no dependence onDr. The horizontal lines running
through the data sets are guides to the eye.
Downloaded 22 Feb 2003 to 128.103.60.225. Redistribution subject to A
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Next, we test the dependence of the self-similar profi
on the surface tensiong and density mismatchDr. In order
to changeg, different sets of liquids must be used. The use
surfactants was ruled out since the surface flows during sn
off would produce concentration gradients of the surfacta
and the drop surface tension would not be uniform. Unfor
nately, using two different sets of fluids makes it difficult
test independently for the effects of surface tensiong and
density mismatchDr. In Figs. 5~a! and 5~b! we plot the
slopesS1 and S2 for fluid systems which have approx
mately the same value ofl as a function of the surface ten
sion g. Figures 6~a! and 6~b! then plot the same data as
function of the density mismatchDr. We find that, within
error, Dr and g do not affect the slopes of the conical pr
files. While the inertial terms are absent in the Stokes eq
tions and are therefore not expected to contribute to
flows, the pressure gradient term due to surface tensio
present and in fact determines the structure and scaling o
solutions. The lack of slope dependence ong can be under-
stood by taking account of dimensional considerations. T
slopes are dimensionless numbers and must scale with o
dimensionless combinations of the fluid parameters. Sinc
is impossible to form a dimensionless number usingg, in
combination withh and l the surface tension cannot affe
the value of the slopes.26

Finally, we test the dependence of the slopes on the
cosity ratiol. Figures 7~a! and 7~b! show a plot of the slope
as a function ofl for four systems~different symbols! each
corresponding to a fixed combination ofg, Dr, andD ~which
differs from pair to pair!. For two of these systems we hav
taken advantage of the simple reorientation of the appar
described in Sec. II which allows us to keep the values ofD,

e

ch
ity

FIG. 7. Plots of the slopes~a! S1 and~b! S2 as a function of the viscosity
ratio l. Each symbol corresponds to a fluid system which, within err
keepsg, Dr, andD constant. For two of the fluid systems we have tak
advantage of the simple reorientation of the apparatus shown in Fig. 4 w
keepsg, Dr, andD exactly constant. BothS1 andS2 show a strong depen-
dence onl: S1}l0.2260.07 while S2 peaks nearl50.5.
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g, and Dr exactly the same while varying onlyl. We find
that asl is increasedS1 increases for each pair of point
Furthermore, each pair of data points is consistent wit
power-law dependence onl with an exponent of 0.22
60.07. For theS2 slopes we find that asl is increased, the
data sets show an increase in slope for pairs probing reg
with l,0.5 and a decrease in slope for pairs ofS2 data
probing regions withl.0.5.

Within error @and with the exception of the point atl
50.002~Ref. 27!# the analysis performed on both the sna
off event near the nozzle and the snap-off event near the
~Fig. 1! lead to the same results. This agreement implies
the results are robust and independent of small variation
the surrounding flows.

IV. RESULTS AND DISCUSSION

Having determined that near snap-off the profiles
self-similar and thatl is the only fluid parameter which af
fects the structure of these profiles, we map out the pro
dependence for both the shallow coneS2 and steep coneS1

as a function ofl. Figures 8~a! and 8~b! reproduce plots
~taken from Cohenet al.! of the entire data set showing th
cone slopesS1 and S2 dependencies onl. The entireS1

data set has a power-law dependence:S1}l0.2260.07. TheS2

data set peaks nearl50.5 and decreases asl→0,̀ . At
l526, 0.002, 0.004 theS2 slopes were small and the com
puter could not distinguish them from lines having ze
slope. With the exception of the data forS1 at l!1 these

FIG. 8. Plots of the slopes~a! S1 and~b! S2 as a function of the viscosity
ratio l for the entire~all the parameters are allowed to vary! experimental
data set~solid circles! and the simulations of Zhang and Lister~ 3 ’s!. The
simulations show good agreement with the experimental data except fo
S1 data atl!1. The dashed line in~a! is a power law fit to the experimenta
S1 data and has a slope of 0.2260.07. TheS2 data~b! peak nearl50.5
and the dashed curve corresponds toL21, where L is the linearly most
unstable wavelength for a cylinder of viscous fluid surrounded by ano
fluid. S2 slopes forl526, 0.002, 0.004 could not be distinguished fro
lines having zero slope and were omitted. Data for the plots were taken
Cohenet al. ~Ref. 11! and Zhanget al. ~Ref. 14!.
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findings are consistent with the numerical simulations of
full Stokes equations by Zhang and Lister the results
which are overlaid in the plots.14

The trend in the simulated data indicates a fall-off fro
the power-law dependence at lowl, while the experimental
data do not exhibit this behavior. We note that thel50.02
data in Fig. 3~a! display the expected linear time dependen
for the minimum radius and show collapse for the resca
profiles. Furthermore, the difference between the simula
profiles and experimental profiles can not be attributed to
effects of surfactants. As shown in Fig. 5, the surface tens
does not affect the cone angles. Also, since the experime
procedure is the same for all of the snap-off experiments,
effects of the surfactants would not manifest themselves o
in the low l regime. Therefore, the deviation in the tren
between our experiments and the simulations14 remains un-
resolved. We note that theS1 power-law dependence is no
only asymptotic inl but goes throughl51 as well. The
origin of this dependence is still not understood.

Both the numerical and experimental global trends are
disagreement with the lubrication approximation scaling
guments of Lister and Stone,9 which predict that both slope
scale asl20.5. These scaling predictions involve guessi
which terms in the Laplacian of the velocity fields for th
inner and outer fluid balance the pressure gradients du
the interface. The disagreement with experiment indica
that the velocity flows in the physical system are differe
from those in the lubrication hypothesis. Since a differe
flow geometry necessitates balancing a different set of
placian components, very differentl dependencies for the
cone slopes can arise. For example, a scenario where
inner fluid velocities in the bulb region are all aligned alo
the radial direction~roughly corresponding to a 90° reorien
tation of the Lister and Stone lubrication flows! predicts that
the bulb cone slope scales asS1}l10.5. Clearly, neither flow
approximation captures the proper scaling dependence
cating that the actual system incorporates some combina
of these flows the character of which may bel dependent.14

However, these extreme flow scenarios can be useful in
ting limits on the slope scaling dependence which for visco
drop snap-off is restricted by this argument to lie betwe
l21 andl11.

Zhang and Lister14 point out that for theS2 slopes the
shift to long wavelength~very shallow cones! at large and
small l is reminiscent of the shifts seen in the Tomotika
stability analysis of a liquid thread.20 In his analysis of non-
local perturbations applied to cylindrical threads, the wa
length of the most unstable perturbation diverges asl
→0,̀ . Furthermore, Tomotika showed that the maximu
instability takes place atl50.28~close to the peak in theS2

data! for a perturbation whose wavelength is 10.7 times
radius of the thread. If we take the ratio of the cylinder rad
over this wavelength as the slope of our cone we can s
tematically obtain a cone slope at each value ofl as was
done by Zhang and Lister.14 At l50.28 this analysis gives a
value of 0.9 for the cone slope which corresponds well w
the data. Figure 8 shows a comparison of the experiment
simulationS2 data with a plot of the inverse of the linearl
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most unstable wavelength for a fluid thread surrounded
another fluid. The prediction matches the data over the
gion between 0.02,l,12, however, beyond this region th
measurements need to be performed more carefully to s
the predictions track the decrease in slope~recall the slopes
at l50.002, 0.004, and 26 could not be distinguished fr
zero!.

In addition to measuring the slopes of the self-simi
profiles, the breaking rate of the drop at the minimum rad
dthmin can be measured. We recall that dimensional anal
predicts that all lengths scale ast* H(z,l)g/h. Here the
function H from dimensional analysis has been combin
with the self-similar universal functionH into a function that
depends on both the rescaled axial coordinatez and the vis-
cosity ratio l. For each viscosity ratiol, the functionH
provides the prefactor for the time dependence of the ev
tion of a profile point at a positionz. The point of minimum
radius is easily tracked and scales ast* H(0,l)g/h. Figure 9
shows experimental measurements ofH(0,l).11 While most
of the experimental data can be fit with a power la
H(0,l)}l20.5360.05, there is a significant trend with an ove
all negative curvature. The maximum linear growth ra
V(r 0 ,l), of a perturbation introduced on a cylinder of r
dius r 0 surrounded by another fluid~calculated by
Tomotika20! was shown11 to set a limit on the rate at which
hmin can decrease with time resulting in the upper bound

V~hmin ,l!.dthmin /hmin51/t* .

Using Tomotika’s formula for V(hmin ,l) with hmin

5t*H(0,l)g/h, this equation turns into an upper bound f
H(0,l). The solid line in Fig. 9 corresponds to this upp
bound. All of the data obey the bound and for systems w
0.08,l,12 the agreement is nearly exact indicating that
drop is breaking as fast as it can. Why these drops choos
break as fast as possible is still unclear. The deviation
extremel’s are surprising since the neck profiles are mo
cylindrical than those atl’s close to unity and should there
fore correspond more closely with this type of stabil
analysis. Another discrepancy is that the perturbations
plied by Tomotika are nonlocal, single wavelength, and s
the entire cylinder. The perturbations in the experiment
always local perturbations or spatially confined bumps a
may therefore exhibit different growth rates. Clearly, a d
tailed understanding of how the Tomotika predictions cha

FIG. 9. Plot of the rescaled experimental~Ref. 11! ~solid circles! and nu-
merical~Ref. 14! ~3’s! minimum radiusH(0,l) as a function of the viscos-
ity ratio l and the result of the stability argument~solid line! presented by
Cohenet al. ~Ref. 11!.
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for profiles that are not cylindrical and for perturbations th
are local is needed in order to improve these arguments

Finally, comparing the solutions for very viscous dro
falling in air with very viscous drops falling through viscou
fluids, we find that when we extrapolate our results to
limit where the inside fluid viscosity becomes infinite th
profiles look different. In the case of a very viscous dr
dripping through air, such an extrapolation suggests that
profiles near snap-off are symmetric about the point
snap-off15 ~as seen in the viscous thread photograph of F
1!. For the case of a very viscous drop dripping through
viscous material this extrapolation suggests that the d
profile is asymmetric about the point of snap-off@Figs. 3~e!,
8~a!, and 8~b!#. This is contrary to what one might naivel
assume since, in this limit, the inner fluid is much mo
viscous than the outer fluid or the air and therefore sho
not be affected by the outside medium.11 However, as Zhang
and Lister point out14 the external viscous dissipation in th
two-fluid problem must remain comparable to the intern
dissipation even at very large lambda. Therefore, even in
limit of l→` the parameterl is not sufficient for defining
the shape of the profile. Instead, one must determine both
Reynolds number of the flows~or equivalently the correc
asymptotic regime! and the viscosity ratiol in order to
uniquely determine the drop profile shape. The same a
ments hold for the limitl→0.

V. CONCLUSIONS

We have shown that for a drop dripping through an ou
fluid where the flows are in the Stokes regime, the exp
mental profiles near snap-off for 0.02,l,26 are self-
similar. These self-similar profile shapes are conical and
the casel51 agree with the shapes found in the simulatio
of Stone and Lister9 and the similarity solution computed i
Cohenet al.11 Furthermore, we have experimentally dete
mined that changes in the self-similar solution manif
themselves as changes in the neck cone slopesS2 and bulb
cone slopesS1 ~Figs. 1 and 3!. We find no dependence o
these cone slopes on the nozzle diameterD, the density mis-
matchDr, and the surface tensiong ~Figs. 4–6!. We do find
a strong dependence of the cone slopes on the ratio of
inner to outer fluid viscosityl ~Fig. 7!. For 0.002,l,26,
the S1 slopes scale asl0.2260.07 while the S2 slopes peak
aroundl50.5 and decrease at the extremel. The Stokes-
flow simulations of Zhang and Lister show the same dep
dence with the exception of the data atl!1 where they find
a much more rapid decrease inS1 . In both the experiments
and simulations the trends in theS2 and S1 slopes are in
contradiction to the predictions of the 12D lubrication ap-
proximation model. However, these types of approximatio
can be used to set limits on the slope scaling depende
which for this problem is restricted to lie betweenl21 and
l11.

We have also measured the breaking rate of the drop
different l and found that the data for the prefactorH(0,l)
can be fit with a power lawH(0,l)}l20.5360.05 but that the
data have an overall negative curvature~Fig. 9!. The data for
the breaking rate are compared with predictions from
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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simple theory which uses the calculations of Tomotika
the maximum growth rate of perturbations introduced on
lindrical fluid threads surrounded by an outer fluid. F
0.08,l,12 the values ofH(0,l) predicted by using the
Tomotika growth rates quantitatively match the experim
tally measuredH(0,l). However, at extremel significant
deviations from the calculated upper bound growth rates
observed.

This paper has concentrated on the snap-off problem
the Stokes regime. While this is the final asymptotic regi
for the breakup of two fluids, there are a variety of oth
intermediate asymptotic regimes that occur on the way to
final snap-off event. The tools and concepts discussed in
paper may prove useful in an exploration of these regime
well.
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