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Curvature and mechanics are intimately connected for thin materials,
and this coupling between geometry and physical properties is readily
seen in folded structures from intestinal villi and pollen grains to
wrinkled membranes and programmable metamaterials. While the
well-known rules and mechanisms behind folding a flat surface have
been used to create deployable structures and shape transformable
materials, foldingof curved shells is still not fundamentally understood.
Shells naturally deform by simultaneously bending and stretching, and
while this coupling gives them great stability for engineering applica-
tions, it makes folding a surface of arbitrary curvature a nontrivial task.
Here we discuss the geometry of folding a creased shell, and demon-
strate theoretically the conditions under which it may fold smoothly.
When these conditions are violated we show, using experiments and
simulations, that shells undergo rapid snapping motion to fold from
one stable configuration to another. Althoughmaterial asymmetry is a
provenmechanism for creating this bifurcation of stability, for the case
of a creased shell, the inherent geometry itself serves as a barrier to
folding. We discuss here how two fundamental geometric concepts,
creases and curvature, combine to allow rapid transitions from one
stable state to another. Independent of material system and length
scale, the design rule that we introduce here explains how to generate
snapping transitions in arbitrary surfaces, thus facilitating the creation
of programmable multistable materials with fast actuation capabilities.

buckling instability | origami inspired | snap-through | creased shell |
programmable matter

Curved shells are generally used to enhance structural stability
(1–3), because the coupling between bending and stretching

makes them energetically costly to deform. The consequences of
this coupling are seen in both naturally occurring scenarios, such as
intestinal villi and pollen grains (4, 5), and find use in man-made
structures such as programmable metamaterials (6–9). When these
shells have multistable configurations, the transition between them
is opposed by geometrically enhanced rigidity resulting from the
dominant stretching energy. Often, even for relatively small range
of deformation, stretching leads to the high forces and rapid ac-
celeration associated with a “snap-through” transition in many
natural and man-made phenomena (10–17). For example, Venus
flytraps (Dionaea muscipula) use this mechanism to generate a
snapping motion to close their leaves (11), hummingbirds (Aves:
Trochilidae) twist and rotate their curved beaks to catch insect prey
(14), and engineered microlenses use a combination of bending
and stretching energy to rapidly switch from convex to concave
shapes to tune their optical properties (12). Despite the ability to
engineer bistability and snapping transitions in a variety of systems
by using prestress or material anisotropy (18–24), a general geo-
metric design rule for creating a snap between stable states of ar-
bitrary surfaces does not exist. This stands in stark contrast to the
well-known rules and consequences for folding of a flat sheet, as
shown in origami design (25–27). In origami, weakening the ma-
terial locally by introducing a crease allows the sheet to deform
without stretching, and thus allows the sheet to access low-energy
states without requiring nonlinear material strain.

Geometrical Mechanics of Folding a Shell
Inspired by these ideas from origami, we consider the folding of
curved surfaces with creases. Although this concept has been re-
alized on rare occasions in art (27–29), the continuum mechanics of
a creased shell is far from fully understood. In particular, folding a
curved surface along a crease often leads to large deformations of
the shell. However, despite these nonlinear deformations, we show
that the local geometry of the crease alone creates a large energy
barrier that leads to a snapping transition in a sufficiently thin shell.
Because our proposed design principle arises purely from geometry,
it does not rely on special materials or anisotropy to generate rapid
snap-through transitions; in practical applications, this enables one to
harness the instability for fast actuations purely by design, thereby
providing a simple method for the design of rapidly actuating
structures from a wide range of elastic materials.
We consider a crease to be a long but narrow region of locally

weak material introduced, for example, through a local thinning of
the shell. This local weakening behaves as a foldable hinge in the
shell, but the curvature of the rest of the shell limits the de-
formation of this hinge, because the shell and hinge itself must
deform to accommodate folding along the creased area. When the
entire shell is sufficiently thin, this deformation will be approxi-
mately isometric, meaning it is devoid of in-plane strain. Geometry
and the condition of isometry combine to allow us to relate the
shape of the crease to the deformation of the shell in the vicinity of
the fold. To proceed, imagine an unfolded shell upon which a
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hinge, parametrized by arc length s and having tangent vector tðsÞ,
has been inscribed (Fig. 1A). The perpendicular vectors tðsÞ and
dtðsÞ=ds span the osculating plane, while the space curvature
κ≡ jdtðsÞ=dsj. If the osculating plane makes an angle ψ with respect
to the shell (Fig. 1B), we can define the geodesic curvature,
κg = κ cosψ, and the normal curvature, κN = κ sinψ, as the re-
spective projections of the space curvature onto the tangent (û+,
Fig. 1B) and normal (n̂+, Fig. 1B) of the shell’s midsurface.
An advantage of this decomposition is that, if in-plane strains

in the shell vanish, the geodesic curvature of the fold must re-
main unchanged after folding (30, 31), yielding the relationship
κNðsÞ= κgðsÞtanψðsÞ. The shape of the fold also determines, in
part, the geometry of the shell on either side of the fold. In the
absence of stretching, a shell cannot change its Gaussian cur-
vature K. A straightforward calculation (see the Supporting In-
formation) obtains the mean curvature of the shell near the fold,

H =
1
2

 
κN +

K+ ð∂sψ + τÞ2
κN

!
, [1]

where τ is the torsion of the fold, which measures the rate that
the osculating plane twists around the hinge and, hence, the
nonplanarity of the hinge (32).
A special role is played by angles along which a fold does not

change its space curvature, κ, after folding. In this case we may use

the definition of the geodesic curvature to solve for the angle ψ ,
which yields ψ =±cos−1ðκg=κÞ. There are two solutions for ψ , one
of which may be physically understood as a local reflection of the
shell through the osculating plane of the fold. A surface can be
folded by an angle 2ψ, for example, along which the normal cur-
vature on either side is ±κg tanψ (Fig. 1B). This “mirror reflection”
is naturally an isometry of the surface in the vicinity of the fold,
although the mean curvature H must switch signs on one side
relative to the other. The mirror reflection isometry was noted in
the seminal monograph on bending of surfaces by Pogorelov (33),
whose work on spherical isometries we discuss below.
The bending energy density of a folded surface, in the vicinity of

the fold, is EB =B=2ðH −H0Þ2, where B is a bending modulus and
H0 is the background shell curvature. An unfolded shell has κN of
the same sign on either side of the crease, and thus matches the
preferred curvature H0. However, the bending energy density of a
shell which has been folded (Fig. 1B) is not zero because κN will be
negative on one side and positive on the other; thus, only one side
of the hinge can match the preferred curvature of the shell H0.
Consequently, there must exist a state between the folded and
unfolded states of the shell for which κN = 0. At this critical value,H
generically diverges (Eq. 1, see the Supporting Information). Whereas
the bending energy between the folded and unfolded states
is infinite for isometric deformations, in any real material as
the shell bends the energy will reach a scale where stretching
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Fig. 1. Folding of curved shells along a crease. (A) Creasing a shell involves thinning the shell locally along a curve that lies on the surface to form a “trench.” A local
coordinate system fs, vg on the crease is indicated. (B) Natural and folded states of a creased shell, denoted as the “+“ (unfolded) and ”−” (folded) conformations. Tangent
and normal vectors to each surface “±” are given by û± and n̂±, respectively. N̂F is the normal to the curve, whereas t̂ indicates the tangent to both the crease and the
surface. The angle ψ between N̂F and û is also indicated. (C) Schematics (for+) and creased experimental samples (for−) for all three prototypical geometries: helicoid (K < 0),
cylinder (K = 0), and spherical shell (K > 0). (Insets) Three-dimensional printed molds with embossed ridge to realize creases on (K ≠ 0) geometries, and a scored sheet for
the (K = 0) case. Examples of curves with κN = 0 are marked on schematics in white lines, and creases are marked on experimental samples with dotted yellow curves.
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becomes favorable. As a result, our assumption that the shell
does not stretch must have been flawed, and in-plane stresses
must have developed near the fold similar to stress-focusing
phenomena seen in other curved surfaces (1, 34–39). Beyond this
special stressed configuration, however, in-plane stresses are no
longer necessary and the surface can, at least in principle, ac-
commodate the folding through bending deformations alone.
An important exception to the previous analysis arises when the

crease has zero normal curvature everywhere. Curves with van-
ishing κN can still exist when K=−½ψ ′ðsÞ+ τðsÞ�2 (Fig. 1C). This
occurs trivially on flat paper inscribed with a curved fold because
ψ ′ðsÞ, τðsÞ, and K vanish individually. In this case, the surface can
be folded with a monotonically increasing energy mediated by the
bending energy alone (31, 40). Moreover, curves with vanishing κN
only exist on surfaces of nonpositive Gaussian curvature, restricting
the class of shells that may be creased with this property.

General Design Principle
These considerations provide a geometrical design rule: simply
by introducing a crease with finite normal curvature (κN), an
energetic barrier is created between a pair of locally isometric
states. For any finite-thickness shell, such transitions will require
stretching of the surface and can lead to violent snaps. Bending
along an asymptotic curve, defined to have κN = 0, however, leads
to continuous deformations and the absence of a snap. There-
fore, the three types of Gaussian curvature naturally divide the
shell behavior under folding into one of three types. When K> 0
(such as on a sphere), there are no asymptotic curves so all
creases can generate a snap-through instability. When K= 0,
however, the shell is either completely flat, or has a single di-
rection at each point with κN = 0. One might imagine a cylinder,
for example, which has lines of zero normal curvature along the
cylinder axis. These folds are necessarily straight in space (32).
Finally, surfaces with K< 0 pose a further interesting case––
having two directions at each point along which κN = 0, neither of
which need be straight (41). Consequently, one can have both
kinds of κN = 0 curves on a K< 0 surface: planar and nonplanar,
as we discuss here on a helicoid. All of these κN = 0 curves are
marked in white on respective geometries in Fig. 1C.
To test the applicability of this design rule we crease elasto-

meric and plastic helicoids, cylinders, and spheres, whose K are,
respectively, negative, zero, and positive. Geometries with finite
K were fabricated by casting samples in 3D-printed molds, with
embossed ridges to realize creased areas, whereas cylindrical
shells are prepared by laser-cutting and rolling a planar sheet
(Fig. 1C and Materials and Methods).

Negative Gaussian Curvature: Helicoid
To explore snapping behavior and the lack thereof in negative
Gaussian curvature surfaces, we specifically choose the helicoid.
The helicoid is the only ruled minimal surface (such that H = 0)
with negative Gaussian curvature. As a surface with K< 0, there
exist two curves of zero κN at every point. Moreover, because the
surface is minimal, these two curves are locally orthogonally to
one another (32). For the helicoid specifically, one family of
curves is given by the generating lines, whereas the other is given
by a family of helices that have nonzero curvature and torsion.
Whereas smooth deformation of a shell about a straight crease
can be intuitively visualized as a composition of rigid-body ro-
tations, deformation along a nonplanar crease is less obvious, but
folding along this curve is predicted to be continuous according
to our design principle (See the Supporting Information for more
details). The coexistence of this set of curves makes the helicoid
an ideal surface on which to validate the design rule.
Thus, we fabricate plastic helicoids with creases along three

kinds of curve: (i) a κN ≠ 0 curve generated by slicing the helicoid
with a plane, (ii) the first κN = 0 curve along the generating lines,
and (iii) the second κN = 0 along the helical curve orthogonal to

ruling lines (Fig. 2 A, B, and C, respectively). Deforming these
shells along the κN ≠ 0 crease generates a discontinuous motion
characteristic of a snap-through instability as predicted (Movie S1
and Fig. 2A). Moreover, for the other two planar and nonplanar
creases, we observe the continuous “smooth” motion characteristic
of a simple hinge as predicted for curves with vanishing normal
curvature (Movie S1 and Fig. 2 B and C). Hence, the purely geo-
metric nature of our design rule offers a way to understand the
continuity or discontinuity of folding even without a detailed un-
derstanding of the complex shell mechanics.

Zero Gaussian Curvature: Cylinder
As a singly curved surface, a cylinder has only one set of planar
curves with κN = 0 along the axis. On the other hand, creases with
finite κN on a cylinder can be created by intersecting the surface
with a plane at an oblique angle (θ) at a distance (d) from the
apex, as shown in Fig. 3A and Materials and Methods. According
to our hypothesis, we expect the cylinder to undergo a snapping
transition when deformed along this crease. Remarkably, despite
the introduction of a crease, the free cylinder displays a global
bending deformation instead of snapping (Movie S2). Such
global deformations arise because cylinders have K= 0, and thus
can bend without stretching, so that there is a pathway accessible
to the shell that costs less energy than snapping but still satisfies
the constraint imposed by the indenter.
These pathways can be eliminated by imposing fixed boundary

conditions on one of the free ends of the cylinder by inserting a
rigid cylindrical plug. We use two representative results from the
parameter space consisting of fd, θg for discussing the stability of
indenting a creased cylinder. For creased cylinders with a small
fd, θg= f2.8 mm, 6.6°g, we note that the effective stiffness of the
shell is much lower for small displacements, but that the in-
dentation profile matches the uncreased shell for large indentation.
For creases with larger fd, θg= f11.4 mm, 12.8°g, the localized
stretching energy can be focused entirely in the crease, so that the
energy landscape is modified to allow for a fast snap. As indicated
in Fig. 3B (Movie S2), a transition to an antisymmetric mode is
observed before snapping completely into the mirror reflection
isometry. Notably, stability of the isometric state and the presence
of an antisymmetric mode in our experiments is consistent with
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Fig. 2. Folding of helicoids (K < 0). Composite image of Movie S1 demon-
strates the folding behavior of a creased helicoid with a clamped edge, indented
with a rigid indenter. Schematics for all cases indicate the position of the
crease relative to the asymptotic curves with κN = 0 (dotted black or yellow).
(A) Five frames at equal time interval depict the discontinuous snap-through
deformation of a helicoid possessing a crease with κN ≠0 from initial folded
state (0) to the final folded state (+4). Frame 3 falls midsnap, and is blurred.
For both (B) planar (along generating line) and (C) nonplanar (or helical)
κN = 0 creases, a composite image is used to depict torsion along either side
of the folded state (0) of the crease. As predicted, a continuous deformation
characteristic of a hinge is observed for both of these cases. Frames at equal
time intervals on either side are used (1, 2 on one side, and i, ii on another).
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finite-element analysis (FEA, performed using ABAQUS, Dassault
Systemes).
The stability of this isometric state can be explained by consid-

ering the concentration of bending and stretching energy during
the deformation. Indenting an uncreased cylinder near the free
edge produces a deformation pattern that is composed of two
parts: a region of mirror isometry that contains only bending, and a
localized ridge (1, 33, 37, 42). The localized region, which acts as
an elastic boundary layer, contains all of the stretching energy of
the deformation. By weakening the material through creasing, the
stretching cost for the ridge can be dramatically lowered, and the
folded state may become stable. Here, we observe that for lower
values of fd, θg the bending energy cost of the mirror isometry is
large enough that the energy gain from creasing is insufficient to
result in bistability, whereas larger fd, θg values lower the cost of
the ridge sufficiently to induce bistability.

Positive Gaussian Curvature: Sphere
Given their axisymmetry, spherical shells are well suited to quan-
titative analytical, computational, and experimental analysis.
Moreover, mechanisms involving pure bending are avoided in
spherical shells, because surfaces with doubly curved shells nat-
urally require stretching for many deformations of the surface
(1, 43, 44). Because the spherical geometry is devoid of any
κN = 0 curves, we expect that intersecting a spherical surface with
a plane to create a crease with finite κN will result in a snap.
Unlike previously discussed geometries, due to the symmetry of
the sphere these creases have constant κN over the whole surface,
allowing analytically tractable solutions. In a systematic ap-
proach, we fabricate hemispheres with different crease radius Rt
and sphere radius Rs, and define the normalized crease radius as
α=Rt=Rs (Fig. 4A). Upon indentation, for an uncreased shell
(Rs = 35 mm, α= 0) we observe a monotonically increasing load
response similar to previous studies (1, 38, 45) (Fig. 4B). In a
similar fashion to the cylinder, we observe a local minimum in
force for lower values of α (=0.5) devoid of a stable folded state,
but indenting a creased shell with higher α (=0.6) leads first to an
unstable, nonaxisymmetric snap, soon followed by a well-defined
stable snap (Fig. 4B, Insets and Movie S3).

Along the lines of argument we presented for stability of creased
cylinders, a spherical shell poses a system which can be solved
analytically. There is a well-known nearly isometric deformation of
a sphere seen for displacements larger than the thickness but
smaller than the crease size (33, 46). This deformation regime is
characterized by an inverted bulge of radius r and bounded by a
ridge of size ℓ∼

ffiffiffiffiffiffi
tRs

p
(Fig. 4C). The energy for this state has a

bending energy contribution from the inverted bulge that scales as
EB ∼Bðr=RsÞ2, whereas the “Pogorelov ridge,” acting as an elastic
boundary layer, contains all of the stretching energy (35, 47). The
energy in the ridge scales as EP ∼Y ðt=RsÞ5=2r3, with Y as the
Young’s modulus of the material. Hence the total energy (ET) for
deformation scaled by B can be expressed as

EP +EB

B
≈
�

r
Rs

�2

+ γ1=4
�

r
Rs

�3

, [2]

where γ is the Föppl–von Kármán number γ ≡ ŶR2
s =B, with Ŷ as

the stretching modulus of the material (plotted schematically in
Fig. 5A). For a thin shell Ŷ =Yt, and B=Yt3=12ð1− ν2Þ, where ν
is Poisson’s ratio, such that γ ∼ ðRs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12ð1− ν2Þ

p
=tÞ2. The Föppl–von

Kármán number characterizes the balance between bending and
stretching energies, and can be defined even for structures that
are not technically thin shells, such as viruses and polymerized
membranes (48).
In the case of a creased sphere, we assume that the deformation

of the shell retains the same structure as this classical solution, but
now the thickness of the sphere in the Pogorelov ridge is a function
of the bulge radius r, such that tðr=RtÞ= etðr= 0Þ, where e< 1. As
shown schematically in Fig. 5A, for a creased spherical shell there is
a local minimum in the Pogorelov energy centered at r=Rt that
generates an energy barrier that competes with bending energy.
However, for small values of α the monotonically increasing
bending energy overcomes the energy gain from thinning the shell
at the crease, and the folded state remains unstable. Evidently, for
larger values of α, this gain surpasses the bending energy of the shell,
resulting in bistability due to the presence of a local minimum in total
energy. Thus, we infer that the stability of creased shells is governed

A B

Fig. 3. Folding of cylinders (K = 0). (A) Bistable states (+, −) of a cylinder
with appropriate planar crease. Crease parameters d (distance of the oscu-
lating plane from the apex) and angle θ (from horizontal) are shown in
the schematics, along with values for d, θ for the representative samples
studied in this experiment. The radius of the cylinder is 25 mm. (B) Force–
displacement curves for uncreased (red), crease with θ= 6.6°, d = 2.8 mm
(blue) exhibiting monostable behavior. In contrast, a creased cylinder with
θ=12.8°, d = 11.4 mm (green) exhibits an antisymmetric behavior leading
to a bistable snapped state. Snapshots from experiments and FEA simula-
tions show different stages of deformation. A contact-slip profile is seen at
higher displacements for these samples. See, additionally, Movie S2.
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Fig. 4. Folding of spheres (K > 0). (A) Spherical shell of thickness t, radius Rs,
and a crease radius Rt in bistable states (+, −). Vectors (û±, n̂±, N̂F, and t̂) and
parameters (Rt ,Rs, and ψ ) used in this study are overlaid on the experimental
sample. (B) Spherical shells with crease radius α=Rt=Rs = 0 (red), 0.5 (blue),
and 0.6 (green), and over all radius Rs = 35 mm. For the smaller value of α, no
stable snap is observed indicating monostability, whereas for larger value of
α a nonaxisymmetric deformation, followed by a stable snap, occurs under
indentation (Movie S3). (C) Schematics for the Pogorelov state of a deformed
spherical shell, with representative ridge (of size ∼ l) at a radius r; and the
folded state of a creased spherical shell (radius Rs), with a crease radius Rt.
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by the competition between bending energy of the undeformed shell
and stretching energy contained in the creased region.
To confirm this simple model, we again use FEA to determine

the conditions under which there is a stable snap. For linear
elastic materials this system is fully characterized by two di-
mensionless numbers, the reduced crease radius α and the Föppl–
von Kármán number γ. We report the total energy for axisym-
metric solutions with γ = 104 (corresponding to the elastomeric
hemispheres discussed here) as a function of the indenter dis-
placement (h) and the normalized crease radius (α) in Fig. 5B. We
find that, beyond a critical crease radius, there is a bifurcation of
stability and the energy curves develop a well-defined local mini-
mum (solid) and maximum (dashed), with the region between
these curves denoting a basin of attraction for the folded state.
By examining creased hemispherical shells over a range of γ, we

construct a phase diagram for stability of creased spherical shells
(Fig. 5C). Through numerical simulations, we find that for in-
creasing thickness, larger values of the crease radius are required to
create a stable snap. Moreover, we conduct a series of experiments
on spherical shells with a range of γ and α, and identify the stability
of the folded state. These reveal a boundary between bistability and
monostability that is in excellent agreement with our numerical
calculations. Further bolstering this, for some samples we observe
the presence of folded states that are temporarily stable (for times
on the order of seconds)––the proximity of these samples to the
predicted phase boundary further demonstrates the agreement
between experiments and simulation.

Conclusion
The ability to introduce tunable bistability into a curved shell via
structural inhomogeneity represents a major step in generating
programmable materials with rapid actuation capabilities. While
inhomogeneous shells have already been predicted to serve as a
template for constructing tunable shapes (49), and used to design
next-generation substances such as lock-and-key colloids (50) or
controllably collapsible capsules (39), our geometric design prin-
ciple adds further insight into controlling the mechanics of thin
shells. Because the speed of the snap arises from stretching in the
shell, inertia mediates the transition at the speed of sound in the
material (Movies S1–S3), and crucially, the snap is unimpeded by
poroelasticity or hydraulic damping as displayed in many natural
snapping systems (51). Our work lays the foundation for de-
veloping non-Euclidean origami, in which multiple folds and ver-
tices combine to create new structures. Indeed, smoothly
deployable structures built from non-Euclidean surfaces could be
engineered using origami-like principles that build upon the iso-
metric design rules for negative Gaussian curvature surfaces that
we derive here. Finally, because the principles and methods we
describe are purely geometric, they open the door for developing
design paradigms independent of length scale and material system.

Materials and Methods
Shell Fabrication. Three-dimensional models of different geometries were
designed in a CAD software. The non-Euclidean geometries (helicoid and
hemisphere) were fabricated using a commercial 3D printer (Stratys Inc.,
uDimensions) to obtain two-part molds with embossed features to generate
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creases (Fig. 1C). The hemispherical shells were fabricated using poly(vinyl si-
loxane) by curing a commercially available two-part base–catalyst mixture
[Zhermack SpA Elite Double 32, Elastic modulus ðYÞ= 1.3MPa]. Before filling the
mold, the 1.2:1 base:catalyst mixture was degassed to remove bubbles that may
otherwise serve as defects. The helicoid samples were fabricated using poly
(caprolactone) (Monomer-Polymer & Dajac Labs, 1258, Y = 353MPa), by melting
polymer in the mold at 70 °C, and allowing it to cool. The hemispherical and
helicoid shells studied were 1 mm thick, and the crease had a rectangular cross-
section 0.75 mm deep (e= 0.75) and 1 mm wide along the appropriate curve.
Only samples without structural defects were included for testing. Owing to
their Euclidean nature, cylinders could be fabricated using a conventional 2D
technique. Here, we use a commercial laser cutter (Epilog Laser, Zing 16) to score
a poly(ethylene terephthalate) sheet (Grafix Dura-Lar, 120 μm thick, Y ∼ 5 GPa)
with a curve. The shape of this plane curve is set to be sinusoidal such that when
the sheet is wrapped to form a cylinder, the resulting space curve is the in-
tersection between a plane and a cylinder at an oblique angle (θ). The scored
sine wave was scaled to different amplitudes to obtain the combinations of
d, θ discussed.

Helicoid Characterization. Helicoids with different creases were clamped on
one edge, and deformed along the crease using a rigid indenter by hand.
Composite images using frames at equal time intervals from these movies
were created by using alpha blending. For the sample with a snap-through,
frames were chosen to be 300 ms apart. For the sample with a planar crease,
frames are 1 and 6 s apart for deformation on either side of the torsional

hinge. Lastly, for the sample with helical crease, frames were 1.5 and 1.5 s
apart for deformation on either side of the torsional hinge.

Load Displacement Characterization. A custom-built force displacement de-
vice, combining a linear translation stage (Zaber Technologies Inc., T-LSM 100)
and a load cell (Loadstar Sensors Inc., RPG-10), was used to perform strain-
controlled force measurements. For both cylindrical and hemispherical
samples, 3D printed point indenters (radius ratio of indenter with respect to
shell ∼0.05) were used for indentation. All samples were deformed in strain-
controlled tests at a compressive strain rate of 5 mm/min. Data collection
and analysis was performed using an in-house algorithm in MATLAB (The
Mathworks), without any signal processing/ filtering (components derived
from ref. 52).
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Differential Geometry of Curves and Surfaces
A crease placed on a surface is parametrized by a space curve cðsÞ,
with s an arc length variable that runs along the curve. At each point
on the crease we define the orthonormal Frenet frame ft,NF ,Bg,
with the unit tangent t= ∂sc, normal ∂2s c= κNF, and binormal B=
t×NF vectors, respectively. These vectors are characterized by the
following relationship:

d
ds

0
@ t

NF

B

1
A=

0
@ 0 κ 0

−κ 0 τ
0 −τ 0

1
A
0
@ t

NF

B

1
A, [S1]

where κ is the curvature of the crease and τ is the torsion. The
surface of the shell is composed of two regions that are di-
vided by the crease, each parametrized by a local orthonormal
frame. In a frame of reference where one surface is fixed in
space a local orthonormal frame f̂t,   û+,   n̂+g defines the two
surfaces in the unfolded state. When the surface is folded,
another frame f̂t,   û−,   n̂−g is used to signify the change from
the undeformed state. These vectors are related in a similar
fashion to the Frenet frame:

d
ds

0
@ t

u±

n±

1
A=

0
@ 0 κg κN

−κg 0 τ±g
−κN −τ±g 0

1
A
0
@ t

u±

n±

1
A. [S2]

Here we have aligned the two frames so that the tangent to
the curve is one of the tangents to the surface, and we have de-
fined the geodesic curvature κg≡ t′· u±, the normal curvature
κ±N≡ t′ · n±, and the geodesic torsion τg≡ u′· n. The relationship
between the surface vectors and the crease vectors is given in
terms of the linear combination

u= cosψN f + sinψB, [S3]

n=−sinψNF + cosψB. [S4]

The angle ψ measures the difference between the surface tangent u
and the Frenet normal NF, as well as comparing the geodesic and
normal curvatures directly to the crease curvature via κg = κ cosψ
and κN = κ sinψ. Using this relationship also supplies expressions for
the surface quantities in terms of the crease quantities:

κg = κ cosψ , [S5]

κN = κ sinψ , [S6]

τg =ψ ′ðsÞ+ τ. [S7]

The angle ψ is particularly important if we wish to consider
folding the shells about this crease. The equation for ψ in terms
of normal (or geodesic) curvature has two solutions, that is,

ψ = ±cos−1ðκg=κÞ=±cos−1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− ðκN=κÞ2

q
. This corresponds to the

folded and unfolded states shown in Fig. 1.
To determine the stability of the folded state we first write the

energy for deformation of a thin shell:

E = Yt
2ð1+ νÞ

Z
dS
�

ν

1− ν

�
Eγ
γ

�2
+EαβEαβ

+
t2

12

�
ν

1− ν

�
Kγ
γ

�2
+KαβKαβ

��
,

[S8]

where Eαβ is the strain tensor, Kαβ is the bending tensor, Y is
Young’s modulus, ν is Poisson’s ratio, and t is the thickness of
the shell. To describe the strain and bending tensors of the surface,
we need the first and second fundamental forms, given by
I = gαβdxαdxβ and II = hαβdxαdxβ, where gαβ and hαβ are the met-
ric and curvature tensors, respectively. Using these definitions,
Eαβ = gαβ* − gαβ and Kαβ = hαβ* − hαβ, where gαβ* , hαβ* refer to the fun-
damental forms in the deformed configuration. In general it costs
more energy to stretch than to bend, so we first examine the iso-
metric limit (gαβ = gαβ* ), so that the only contribution to the energy
comes from bending. While this limit is singular, it provides a
simple geometric interpretation of nearly free deformations and
yields insight into the stability and foldability of general shells.
We define a coordinate system on the shell fs, vg using the

crease as the point of origin, so that s is an arc length along the
crease and v is measured orthogonal to the crease, such that

I =Eds2 + 2Fdsdv+Gdv2, [S9]

II± =N±ds2 + 2M±dsdv+L±dv2, [S10]

where we need to define II+, II− separately for the pieces of
the surface that are divided by the crease. Because s is an arc-
length parametrization, the first fundamental form may be writ-
ten as I = dv2 + ρ2ds2, and we have that the components of the
metric are gvv = 1, gsv = gvs = 0, and gss = ρ2, where ρðs,   vÞ is an
unknown function that in general requires the full solution of
the Gauss–Codazzi equations. Close to the crease, v≈ 0, how-
ever, because s is an arc-length variable we know that ρð0,   sÞ= 1.
Finding the bending energy requires that we find the mean

curvature of the surface, which requires us to compute the
components of the curvature tensor, hαβ = ð∂α∂βrÞ· n, where r is
a parametrization of the surface. With the geometric defini-
tions given above, we have the fairly simple results that
N± = hss = κ±N and M± = hsv = τ±g . To find L±, we invoke Gauss’s
Theorema Egregium, which states that det II=det I =K, where K
is the Gaussian curvature of the surface. Written using our no-
menclature, this indicates that

K=
L±N± − ðM± Þ2

EG−F2 =
Lκ±N −

	
±ψ ′+ τ


2
ρ2

. [S11]

Close to the crease this yields L= ðK+ ð±ψ ′+ τÞ2Þ=κ±N if κN ≠ 0. If
κN = 0, then the value of L is not constrained by the Theorema
Egregium, and thus the shell is not constrained isometrically by
the crease.
The bending energy density EB ∼BðH + Þ2+BðH−Þ2, where H =

ð1=2ÞTrfI−1IIg, written in terms of the crease parameters for
κN ≠ 0:

H+ =
1
2
ðN+ +L+Þ= 1

2

 
κ+N +

K+
	
ψ ′+ τ


2
κ+N

!
, [S12]

and similarly for H−. Because the geodesic curvature κg is in-
variant under isometric deformations, we may write the mean
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curvature in terms of isometric constants, parameters that are
related only to the crease, and the folding angle ψ :

H+ =
1
2

 
κg tanψ +

K+
	
ψ ′ðsÞ+ τðsÞ
2
κg tanψ

!
. [S13]

The energy, proportional to H2, diverges as ψ passes through
zero, indicating that our isometric model cannot accurately de-
scribe the transition between folded shell states for creases that
have finite normal curvature. The existence of an infinite barrier
in this singular limit indicates that the angle ψ may not be folded
continuously from the folded state to the unfolded state.
If the crease has zero normal curvature, however, the com-

ponent of the second fundamental form hvv is unconstrained by
the crease. The mean curvature is given by H =L, with L de-
termined entirely by bending away from the crease that is un-
constrained by the condition of isometry. The folding angle and
torsion, however, are constrained by

ψ ′ðsÞ+ τðsÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
−KðsÞ

p
. [S14]

Written another way, we have that τg =
ffiffiffiffiffiffiffi
−Kp

, i.e., that the
geodesic torsion is related to the Gaussian curvature of the
surface. The geodesic torsion physically corresponds to the rate
of rotation of the normal to the surface along the curve.
Together, these results can be used to infer a number of things.

First, finite normal curvature implies that there is an energy
barrier, which implies that a subcritical bifurcation may occur.
Second, zero normal curvature implies that locally, the shell may
deform without stretching, and thus the angle ψ may be varied
continuously without fear of approaching a stretching barrier.
Furthermore, zero normal curvature explicitly means that one of
the components of the curvature tensor vanishes identically;
specifically, the curvature of the surface in the direction of the
crease is always zero.

Example: The Helicoid
A parametrization for the helicoid isHðu, vÞ= fu cos v,u sin v, αvg,
which yields I = du2 + ðα2 + u2Þdv2 and II =−2L=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 + u2

p
dudv.

The helicoid is a minimal surface, so H = 0, and it has Gaussian
curvature K=−α2=ðα2 + u2Þ2.
For a general surface with nonpositive Gaussian curvature, at

every point there exists a pair of asymptotic curves such that the
normal curvature along these curves is zero. For a curve pa-
rametrized by an arc length t, βðtÞ= fξðtÞ, ηðtÞg, solutions to the
following differential equation yield asymptotic curves:

Nξ′ðtÞ2 + 2Mξ′ðtÞη′ðtÞ+Lη′ðtÞ2 = 0. [S15]

For a helicoid, if we let ξ= u, η= v then this equation is simply

−2αffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 + u2

p u′ðtÞ v′ðtÞ= 0, [S16]

which has as solutions curves of constant v (straight lines) or
curves of constant u (helices). Asymptotic curves of constant v
are particularly simple examples, because τ= 0 and κg = 0, so that
these curves are both asymptotic lines and geodesics of the he-
licoid. The ability to fold the helicoid about any of these con-
struction lines follows trivially from rigid-body rotations, and any
energetic cost is associated with the fold, not the bending of
the surface.

Alternatively, we could write this as τg =
ffiffiffiffiffiffiffi
−Kp

= 1=R, where
1=R is the magnitude of the principal radius of curvature of the
helicoid. This means that ψ ′= 1=R, and thus the folding of the
surface only changes along the curve by the same amount that
the surface naturally rotates.
Choosing curves of constant u= u0 yields helices, which have a

constant torsion τ= α=ðα2 + u20Þ, and Gaussian curvature that is
constant along the helix, K=−α2=ðα2 + u20Þ2, so that ψ ′ðsÞ= 0
along the curve. Any constant folding angle ψ will lead to locally
isometric deformations that do not necessarily result in an en-
ergy barrier to folding. These arguments are all local, and there
may be global constraints that lead to an energetic barrier, but
this depends specifically on the type of surface and shape of
the crease.
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Movie S1. Deformation of creased helicoids made from poly(caprolactone) with a rigid indenter under constrained boundary conditions at the “straight”
edge. A continuous hinge-like deformation is demonstrated by crease with zero normal curvature (KN = 0) along (i) generating line (straight), and (ii) or-
thogonal to it (helical), whereas a snap-through instability is observed for crease along (iii) a curve with finite normal curvature (KN ≠ 0). High-speed video of
snap @ 3,000 frames per second (fps) included.

Movie S1

Movie S2. Deformation of cylinders made from poly(ethylene terepthalate) with different crease parameters and boundary conditions to demonstrate
monostability and bistability. An isometric deformation of creased cylinder in absence of constrained boundary conditions can be seen. The antisymmetric
deformation mode in case of a bistable creased cylinder is seen at 00:17 s .High-speed video accompanied for the snap-through transition @ 3,200 fps is
included.

Movie S2
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Movie S3. Deformation of an uncreased (α= 0) and creased [α= 0.5 (exhibits monostability) and α= 0.6 (exhibits bistability)] hemispheres made from poly(vinyl
siloxane). High-speed video of snap @ 500, 4,000 fps included. For α= 0.6, the deformation goes through Pogorelov regime (timestamp: 00:37), the non-
axisymmetric snap (timestamp: 00:40), and final snap (timestamp: 00:43).

Movie S3
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