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Articular cartilage is a fascinating biological material wherein a careful balance of mechanical and 

biological homeostasis ensures healthy joint function over decades of normal loading. Injurious 

loading, however, can upset this balance, inducing cartilage’s chondrocyte cells to dysfunction and 

leading to both the degradation of the tissue and, ultimately, the debilitating joint disease 

osteoarthritis. Understanding how injury causes dysfunction is important not only for 

understanding disease pathogenesis, but also for targeting treatments to protect and preserve 

cartilage. Previous studies have explored both the mechanical and biological deterioration of 

cartilage after injury, observing cracks in the extracellular matrix and a complex wave of cellular 

responses, including respiratory dysfunction and death. However, many open questions remain 

regarding the link between injury mechanics and cartilage dysfunction. In the first part of this 

thesis, I explore the spatiotemporal evolution of cellular dysfunction after impact injury in order 

to relate this dysfunction to the mechanics of injury and elucidate promising therapeutic targets. 

First, I present a custom impact device to injure cartilage explants while interfacing with 

microscopy. Analyzing such imaging data, I found that injury induces a wave of mitochondrial 

dysfunction within 15 minutes of impact and cell death within 3 hours. Both measures are highly 

correlated with the local strain experienced during injury, showing that injury mechanics dictate 

peracute cellular dysfunction. Consequently, cartilage’s compliant surface layer may serve to 



 

protect underlying cells by absorbing excess strain. Remarkably, I also found that treating samples 

with the mitoprotective peptide SS-31 completely eliminated the strain-dependent mitochondrial 

dysfunction after impact. These results have important clinical implications for understanding the 

very first changes in cartilage after injury and targeting these responses with clinically-relevant 

treatment. In the next part of this thesis, I explore one commonly-observed form of mechanical 

deterioration induced by cartilage injury: cracks. In particular, I present a method to indent 

cartilage with a sharp blade while simultaneously tracking bulk and local mechanics. Results 

showed significant dependence across physiologically relevant rates and were modified by 

cartilage’s layered structure. Taken together, this study highlights the importance of rate and 

inhomogeneity in governing cartilage failure and suggests important parallels between failure in 

cartilage and in high-toughness double-network hydrogels. Finally, I close by exploring 

spatiotemporal mechanics and indentation failure in an entirely new system: protective glass 

coatings. Tracking embedded fiducial markers in polymeric coatings with rapid 3D confocal 

videos, I show that incorporating nanosilica beads in the coatings modulates their adhesion and 

indentation response, with important implications for their ability to protect the underlying glass. 

Overall, this thesis champions the utility of imaging in concert with spatiotemporal analysis in 

order to relate the complex mechanical behavior of a system, such as articular cartilage, to its 

function and dysfunction.  
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CHAPTER 1. INTRODUCTION 

1.1 Guide to the thesis 

At its heart, science is an observation and a curiosity. No matter the specialty, the goal has always 

been to understand this world and the principles that guide it. The five senses, however, are rarely 

adequate devices in the pursuit of knowledge - human eyes cannot see infrared light or observe 

organelles in a cell. The challenge of the modern scientific pursuit, then, is to observe the 

unobservable. Each experiment has the opportunity, if not the duty, to enhance our senses, 

revealing a unique perspective on nature and the universe. It is not until we can see our world in a 

new light that we open the door to learn more than ever before. This search for innovative 

perspectives has proven to be the fundamental truth driving my education and fascination with the 

world, and it is the guiding principal connecting the works presented here.  

Stated one way, the focus of this thesis is to develop and utilize novel techniques for visualizing 

mechanical behavior, especially in inherently multidisciplinary systems where such mechanics are 

central to the system’s function and dysfunction. In particular, the chapters below present multiple 

related approaches that synthesize imaging modalities with other core ideas in the system at hand 

in order to broaden our understanding of what drives that system towards success or failure. 

In the first part of this thesis, Chapter 2-Chapter 4 explore the interplay between mechanics and 

biology that underlies the development of injury-induced joint deterioration and disease. Here, the 

system of interest is the articular cartilage tissue within mammalian joints that lines the end of long 

bones, dissipating load and providing a low friction surface for joint motion1. The physiologic 
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health and stability of articular cartilage relies on a fascinating interplay between the mechanical 

behavior of the tissue and the biological homeostasis of its embedded cells, known as 

chondrocytes2. Indeed, traumatic mechanical disruption – such as a sports injury that causes an 

ACL tear – upsets this careful balance and can induce a downward spiral toward the common and 

debilitating joint disease osteoarthritis3–5. In these three chapters, we develop and present methods 

that enable us to directly probe the complex relationship between mechanics and biology in 

articular cartilage at a newfound level of detail, especially in the immediate aftermath of an injury, 

where cartilage damage and deterioration are poorly understood2–6. Stated shortly, we explored the 

question “What goes wrong first?” after traumatic cartilage injury. 

In the second part of this thesis, Chapter 5, we move beyond the world of cartilage biomechanics 

to explore mechanics in a new system: protective glass coatings7–10. Broadly, this chapter 

highlights the versatility and utility of imaging data for understanding the detailed interplay 

between damage and mechanics, even outside of biological systems. Specifically, we present a 

method for tracking the microscale flow of polymer coatings on glass in order to understand their 

3D flow and time-evolution during indentation. In collaboration with Corning Incorporated, we 

applied this method to explore the differences in behavior between two formulations of polymer 

coatings that may be used to protect glass in real-world applications. In particular, we embedded 

fluorescent particles into the coatings and used these spheres as fiducial markers to track the 3D 

microscale strain and stress in the coatings during traditional Vickers indentation testing. 

Comparing the two coatings, we observed important differences in slip at the coating-glass 

interface which may influence their fundamental ability to absorb load and protect the underlying 
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glass from damage. Moreover, this method provides an experimental complement to the existing 

theoretical and modeling approaches for studying indentation in layered systems11–15. 

Overall, in this thesis we develop and apply novel methods to explore the spatiotemporal 

interaction between mechanical injury and biological dysfunction in articular cartilage disease, as 

well as the spatiotemporal behavior of coatings used to protect glass surfaces. By using these 

methods, we reveal a unique perspective on what drives these systems – articular cartilage, 

protective glass coatings – toward success or failure, whether in your knee or on your mobile 

phone. 

1.2 Articular cartilage and injury-induced dysfunction 

The joint disease arthritis is a major healthcare problem that causes pain and disability in 23% of 

adults. Osteoarthritis (OA) is the most common form of arthritis which affects about 10% of adults 

in the United States, with a growing prevalence as the population ages16,17. Often, OA develops 

after an injury such as a sports injury or car accident, and in those cases is referred to as post-

traumatic OA (PTOA)3. One hallmark of joint damage and disease, including OA, is the 

degradation and loss of the smooth articular cartilage tissue that lines the ends of bones in 

diarthroidal joints, dissipating load and facilitating joint motion18. However, there is no cure or 

effective treatment for OA and many open questions remain regarding the pathogenesis of injury-

induced cartilage damage. 

Cartilage tissue is composed of relatively few cells surrounded by an extracellular matrix (ECM) 

which has a complex double-network structure that also has depth-dependent anisotropy and 
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inhomogeneity1 (Figure 1.1, Figure 1.2). The first network of the ECM is composed of collagen 

fibrils (primarily collagen II) which are covalently bonded to form a network that can withstand 

tensile forces. The second network is composed of proteoglycans entangled in the collagen 

network. These proteoglycans are highly charged and thus resist compressive loads. These charges 

also draw in fluid and ions which provide further compressive support and establish an additional 

poroelastic behavior in cartilage19–21. In particular, cartilage volume changes require fluid flow and 

there is an associated poroelastic timescale required for this flow that depends on both the porous 

structure and the geometry of the sample and loading environment. In addition to this network 

structure, cartilage tissue has depth-dependent anisotropy and inhomogeneity. Within the first 10-

50 µm of the articular surface, collagen fibrils are preferentially aligned in-plane, with an 

additional in-plane alignment known as the split-line pattern22–24. Below the surface, in the 

intermediate tissue, the collagen network is more randomly aligned. In mature cartilage, collagen 

fibrils in the deepest part of the tissue near the bone are preferentially aligned perpendicular to the 

bone. Separately, cartilage also exhibits depth-dependent material properties. In particular, the first 

250-500 µm, known as the surface layer of cartilage, is much more compliant than the bulk of the 

tissue, both in compression and shear25,26. In addition to its complex material structure, cartilage 

also functions as an important tissue in joints. Unlike many other tissues, cartilage is composed 

primarily of ECM with relatively few embedded cells, known as chondrocytes. These 

chondrocytes are important for producing and maintaining the surrounding ECM. They also 

respond to their mechanical loading environment, with healthy responses to normal loads but 

adverse and detrimental responses to excessive or injurious loads5,27.  
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Figure 1.1. Some of the important structural features found in a typical joint and the 

relevant length scales. Copied from Mow et al. 1992.1 
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Figure 1.2. The collagen network interacting with the proteoglycan network in the 

extracellular matrix forming a fibre-reinforced composite. Copied from Mow et al. 1992.1 

In general, joints experience a wide range of loading rates, and an even wider range of time scales 

are relevant for cartilage injury and disease. During normal, physiologically-relevant loading, 

cartilage must withstand loading rates ranging from rapid loading during exercise (e.g. running 

~4 Hz) to static loading during other activities (e.g. sitting ~0 Hz). Moreover, injurious loading 

must be super-physiologic to be considered an injury and thus usually involves even faster loading 

rates, ~1000 Hz or ~10-3 s28. However, traumatic joint injury may not develop into osteoarthritis 

for many years after injury (~109 s), leaving many decades of time scales that are relevant for 

understanding PTOA. While much is known about the later stages of joint disease, relatively little 

is known about what occurs in cartilage during and immediately after an injury and there are few 

techniques to observe the relevant phenomena on these time scales. 

Joint injury and disease induce many mechanical and biological changes in articular cartilage. In 

the later stages of osteoarthritis, cartilage tissue has worn away from the surface, either particular 

or entirely, and the tissue often develops fractures and fissures in the surfaces5. Moreover, the 
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chondrocyte cells exhibit widespread apoptosis and induce matrix degradation and associated loss 

of material properties. In cartilage, the current understanding is that injurious loading induces a 

complex wave of responses over the days and weeks after an injury, including necrosis, apoptosis, 

inflammatory signaling, and anabolic and catabolic responses2 (Figure 1.3). However, studies have 

not extensively explored the evolution of ECM and chondrocyte changes in cartilage in the 

peracute timeline after an injury (minutes-to-hours). Moreover, no studies have explored the 

microscale deformation of cartilage tissue in responses to such a fast, injurious loading. As such, 

many open question remain regarding how injury mechanics affect biological function, what goes 

wrong first, and to what degree we can predict or prevent or treat such damage.  

 

Figure 1.3. This conceptual framework depicts the immediate cellular responses to acute 

joint trauma and facilitates the identification of targets for early interventions. Catabolic 

and anabolic processes are involved in the response to the injury and overlap with one 

another. Copied from Anderson et al. 2011.2 
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Broadly, the open questions surrounding injury-induced dysfunction in articular cartilage, 

especially those addressed in this thesis, involve the important and complex interplay between 

mechanics and biology. As such, these questions can be grouped based on the biomechanics and 

mechanobiology perspectives. One on hand, biomechanics involves the study of how tissue 

structure influences its mechanical behavior. On the other hand, mechanobiology seeks to 

understand and explain how cells respond to their mechanical environment. In the first part of this 

thesis, we present studies that address both perspectives. In particular, Chapter 4 explores cracks, 

a mechanical consequence of injury in cartilage, from the perspective of biomechanics, while 

Chapter 2 and Chapter 3 explore cellular dysfunction and the biological consequences of injury 

from the mechanobiology perspective. In combination, both biomechanics and mechanobiology 

are both equally useful and important for understanding and treating injury-induced dysfunction 

in articular cartilage. 
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CHAPTER 2. MEASURING MICROSCALE STRAIN FIELDS IN ARTICULAR 

CARTILAGE DURING RAPID IMPACT REVEALS THRESHOLDS FOR 

CHONDROCYTE DEATH AND A PROTECTIVE ROLE FOR THE 

SUPERFICIAL LAYER 

Bartell, L. R., Fortier, L. A., Bonassar, L. J. & Cohen, I. Journal of Biomechanics 48, 3440-3446 

(2015). 

2.1 Abstract 

Articular cartilage is a heterogeneous soft tissue that dissipates and distributes loads in mammalian 

joints. Though robust, cartilage is susceptible to damage from loading at high rates or magnitudes. 

Such injurious loads have been implicated in degenerative changes, including chronic 

osteoarthritis (OA), which remains a leading cause of disability in developed nations. Despite 

decades of research, mechanisms of OA initiation after trauma remain poorly understood. Indeed, 

although bulk cartilage mechanics are measurable during impact, current techniques cannot access 

microscale mechanics at those rapid time scales. We aimed to address this knowledge gap by 

imaging the microscale mechanics and corresponding acute biological changes of cartilage in 

response to rapid loading. In this study, we utilized fast-camera and confocal microscopy to 

achieve roughly 85 µm spatial resolution of the cartilage deformation during a rapid (~3 ms), 

localized impact and the chondrocyte death following impact. Our results showed that, at these 

high rates, strain and chondrocyte death were highly correlated (p<0.001) with a threshold of 8% 

microscale strain norm before any cell death occurred. Additionally, chondrocyte death had 
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developed by two hours after impact, suggesting a time frame for clinical therapeutics. Moreover, 

when the superficial layer was removed, strain – and subsequently chondrocyte death – penetrated 

deeper into the samples (p<0.001), suggesting a protective role for the superficial layer of articular 

cartilage. Combined, these results provide insight regarding the detailed biomechanics that drive 

early chondrocyte damage after trauma and emphasize the importance of understanding cartilage 

and its mechanics on the microscale.  

2.2 Introduction 

Osteoarthritis involves the degradation of articular cartilage in joints and is a leading cause of 

disability29–31. Clinically, 12% of osteoarthritis is post-traumatic (PTOA), wherein initiation stems 

from a distinct mechanical insult3 and trauma is known to initiate progressive cartilage 

degradation2,3,5,32–35. After decades of research, PTOA initiation is poorly understood and a cure 

remains elusive2,4–6. 

Understanding PTOA has proven difficult, due in part to the complexities of cartilage material 

properties and the scope of the disease. For example, cartilage has a distinct superficial layer that 

is more compliant and dissipates more shear energy than the bulk25,26,36–38. Additionally, a 

traumatic, pathologic event can deliver forces over a fraction of a second (10−3 s)28, while a patient 

may not present with symptoms for years (108 s)6. This represents ten orders of magnitude in time 

that are important to the problem. Currently available animal and explant models can monitor bulk 

cartilage mechanics on injury time scales (10−3 s) and investigate biomechanical effects of trauma 

over hours to months (101 – 106 s)6,39–43. Studies have also investigated mechanics at the cellular 

level44–46. Although loading rate affects cellular response47, methods to measure microscale 
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mechanics (e.g. 10-100 µm) at physiologic time scales (e.g. 10−1 – 100 s) have only recently been 

developed (Buckley et al., 2010). This leaves an important, unexplored gap in understanding 

microscale cartilage changes during and immediately following rapid traumatic injury. 

The purpose of this study was to design and implement techniques to investigate the microscale 

mechanics of articular cartilage during rapid impact and to statistically describe the acute 

chondrocyte response. In particular, our method correlated microscale tissue strains during rapid 

impact (85 µm and 1 ms resolutions) with the microscale, time-dependent decrease in cell viability 

following that impact (85 µm and 10 min resolutions). This correlation enabled identification of 

microscale thresholds and sensitivities of chondrocytes to microscale deformation. Additionally, 

we tested for mechanical and biological changes in response with the superficial layer removed. 

This directly linked the mechanics of rapid cartilage impact to acute biological changes, giving 

new insight on the mechanisms of PTOA initiation. 

2.3 Methods 

A custom method enabled the correlation of chondrocyte death and microscale mechanics: 

chondral explants were impacted while a fast-camera recorded their rapid deformation; subsequent 

cell death was captured via confocal microscopy. 

2.3.1 Impact device 

The setup consisted of a custom impact device on an inverted confocal microscope (LSM 5 LIVE, 

Carl Zeiss Inc., Jena, Germany) (Figure 2.1) with a 10× objective. The confocal housing interfaced 
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with a high-speed camera (v7.1, Vision Research, Wayne, NJ) and a mercury arc lamp (HBO 100, 

Carl Zeiss Inc., Germany) to enable epi-fluorescence microscopy at 1,000 frames per second. 



13 

 

Figure 2.1. A technique for rapid impact microscopy was developed. A custom impact 

device (A,B) included a compressed spring which was released by a trigger to drive the 

piston and attached rod into the sample. The sample, which was mounted on the backplate, 

was immersed in PBS to maintain tissue hydration during testing. The cantilevered 

backplate was mounted to the stable body of the impact device via a mounting bracket. A 

glass slide allowed the sample to be viewed from below. The impact device was designed 

to mount on an inverted confocal microscope such that the objective looks up through the 

glass slide, as depicted (B). The microscope also interfaced with a mercury arc lamp and 

high-speed camera (not shown) to allow epifluorescence imaging at 1,000 frames per 

second. (C) A photograph of the impact device. 
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The custom impact device (Figure 2.1A) includes a spring (2.96 kN/m, McMaster-Carr, Elmhurst, 

IL) of adjustable compression which, upon triggering, drives a aluminum piston and attached 

0.8 mm diameter steel rod (McMaster-Carr, Elmhurst, IL) into the sample (design inspired by 

Alexander et al.48). All impacts were energy-controlled at ~0.12 J (8.9 mm spring compression) to 

consistently cause cell death without micro-cracking and thus can be considered moderately 

pathologic28. Each sample was glued, as described previously49, to a cantilevered aluminum 

backplate with the articular surface facing the impact tip. Impacts were observed from below 

through a glass slide, showing the rod’s circular cross section approaching the sample 

(Figure 2.1B). Samples were mounted 2 mm above the glass slide, leaving a fluid layer in between. 

Using known weights, the backplate was calibrated as a cantilevered spring (152 kN/m). Backplate 

motion during impact was tracked using intensity-based image correlation in MATLAB (The 

MathWorks Inc., Natick, MA) and used to measure impact force. Peak force was combined with 

area of impact indentation to estimate peak bulk stress. 

2.3.2 Sample preparation 

Eighteen full-thickness, 6 mm-diameter chondral explants (without bone) were harvested sterilely 

from the outer rim of the tibial plateau of 6 neonatal calves (sex unknown, assumed random; Gold 

Medal Packing, Oriskany, NY). Explants were immersed in phenol red-free DMEM with 10% 

FBS (Invitrogen, Waltham, MA) and 1% antibiotics (100× penicillin-streptomycin, Mediatech, 

Manassas, VA) and stored at 4°C for up to 48 hours. Using tissue slicer blades (Stadie-Riggs, 

Thomas Scientific, Swedesboro, NJ), explants were cut in half to create two hemi-cylinders and 

trimmed to approximately 2.5 mm deep. Paired hemi-cylinders were used as control and impacted 
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samples. For eight explants, 1 mm was removed from the articular surface, maintaining the 2.5 mm 

thickness, creating two sample populations: surface-intact and surface-removed. 

2.3.3 High-speed deformation imaging 

A fluorescent stain with a photobleached grid was used to visualize tissue motion during impact. 

All samples were stained in 28 µM 5-DTAF (ex/em 492/516 nm; Invitrogen, Waltham, MA) for 

45 minutes followed by a 10-minute PBS rinse to provide general cartilage staining (Buckley et 

al., 2010; Silverberg et al., 2014). Using a precision wire mesh (TWP Inc., Berkley, CA) a 120 µm 

grid was photobleached on the samples. This grid size was chosen to be resolvable over motion 

blur, ensure adequate cell counting statistics (>50 cells/grid box), and capture tissue mechanical 

inhomogeneities. Paired control and impact samples were mounted side-by-side to the backplate 

and surrounded by PBS. Upon impact triggering, cartilage deformation was recorded using the fast 

camera. 

2.3.4 Cell viability imaging 

Chondrocyte death after impact was imaged. 2 uM ethidium homodimer (EthD) (Invitrogen, 

Waltham, MA) was added to the cavity, staining for 30 minutes before impact. Dead cells were 

imaged every 10 minutes for 3 hours following impact. Preliminary, 12-hour studies demonstrated 

that nearly all cell death occurred within 3 hours. To measure total cell density, paired control 

samples were frozen after experimentation, thawed in PBS, re-stained with EthD and re-imaged50. 

This produced confocal images of three treatment groups showing: (1) cell death in the impacted 

sample as a function of time (“impact”), (2) cell death in the control sample as a function of time 
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(“control”), and (3) all cells in the frozen control sample (“frozen”), a measure of the total cell 

density in that sample. All confocal images were taken in a z-stack spaced at 10 µm to capture 

dead cells within 40 µm of the cut surface. This spacing was chosen to match the axial resolution 

of the confocal imaging setup. Images were collapsed in z, normal to the cut surface, before 

analysis. 

2.3.5 Microscale deformation analysis 

To extract microscale cartilage deformation during impact, fast-camera videos were analyzed in 

MATLAB. The image taken at peak indentation was used as the deformed configuration, with the 

image just before impact as its reference configuration. For bulk mechanics, displacement of the 

tissue surface under the impact rod was tracked manually to calculate bulk strain, correcting for 

backplate displacement. For microscale mechanics, template matching was used to find “bright 

cross” and “dark square” grid points (blue and yellow circles in Figure 2.2A-B). Using nearest-

neighbor grid points, the Lagrange strain tensor 𝑬(𝑥, 𝑦) was calculated with a spatial resolution of 

roughly 85 µm, where the 𝑦-axis is perpendicular to the articular surface (§2.7.1). To represent 

strain as a scalar field, two quantities were computed: the spectral norm of the strain, ‖𝑬‖ (strain 

norm), and the magnitude of the shear component, |𝐸𝑥𝑦| (shear strain). 
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Figure 2.2. Representative fast-camera images of rapid cartilage impact and associated 

microscale strain fields. Fast-camera images taken before impact (A) and at peak 

indentation (B) were processed to extract grid-point locations (blue and yellow circles). 

This grid was divided into nearest-neighbor triangles, which were tracked between frames 

and used to extract the microscale Lagrange strain tensors. Note that dark triangles in the 

bottom left and right of (A,B) are the edge of the circular field of view, while the flat edge 

at the top is the surface of the sample. Representative maps of the spectral norm of the 

Lagrange strain (C) and the magnitude of the Lagrange shear component (D), both shown 

with respect to deformed spatial coordinates, demonstrate characteristic patterns of strain 

localization. The scale bar is 500 µm and applies to all plots. 

To characterize the shear strain fields’ size and orientation, principal component analysis was 

performed on the (𝑥, 𝑦) points, with a binary weighting based on the shear strain value: 1 for shear 
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strain above 50% of the sample’s maximum and 0 otherwise. The first principal component and 

its orientation relative to undeformed coordinates were extracted, representing the size and 

orientation of the strain pattern, respectively. 

2.3.6 Cell viability analysis 

Confocal images were processed in MATLAB to find (𝑥, 𝑦) locations of all dead cells (§2.7.2). 

Through comparison with manual counting, cell counting uncertainty was estimated as 7%. Using 

Sobel edge detection, the sample surface was identified and fit to a second-order polynomial 

function of lateral displacement, enabling a correspondence between spatial coordinates, (𝑥, 𝑦), 

and depth coordinates, (𝑥, 𝑑), where 𝑑 is depth. The same technique was used to compute the 

depth of each grid point in fast-camera images. 

Cell locations were binned to calculate microscale probability of death due to impact as 

𝑃(𝑥, 𝑦, 𝑡) =
𝜌impact(𝑥,𝑦,𝑡)−𝜌control(𝑥,𝑦,𝑡)

𝜌frozen(𝑥,𝑦)−𝜌control(𝑥,𝑦,𝑡)
, where 𝜌𝑖(𝑥, 𝑦, 𝑡) is the area number density of dead cells in 

each treatment group, 𝑖  (§2.4), as a function of bin location, (𝑥, 𝑦), and time after impact, 𝑡. 

Control densities were subtracted from the numerator and denominator to remove death due to 

causes other than impact. Roughly 100% cell death was observed at the surface (𝜌frozen − 𝜌control ≅

0), invalidating analysis there. Thus, data less than 200 µm deep were discarded.  

To highlight the time evolution, cells in a 400 µm wide region centered about the impact location 

were binned at 50 µm in depth (collapsing along the 𝑥 direction) and used to calculate 𝑃(𝑑, 𝑡), the 

probability of death due to impact as a function of depth and time after impact. Trends in  𝑃(𝑑, 𝑡) 

were averaged across all samples in each population, where the standard deviation of sample-to-
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sample variation was roughly 25 percentage points. In MATLAB, a mixed-effects linear regression 

model was implemented to test for significant differences between data from surface-intact and 

surface-removed samples. In the model, the response variable was 𝑃 , while 𝑑 , 𝑡  and surface 

treatment (i.e. intact or removed) were fixed-effect predictor variables, including interaction terms. 

An independent random effect was added to account for sample to sample variation. Residuals 

were checked for normality, confirming the model’s validity.  

2.3.7 Correlating microscale deformation and viability 

Impact deformation and viability following impact were correlated on the microscale. Fast camera 

grid points in the undeformed configuration (§2.5) were projected onto the confocal image of the 

same sample at 3 hours after impact. Nearest-neighbor grid points were used as bin boundaries to 

calculate the microscale probability of cell death due to impact (§2.6). Accordingly, at each grid 

point (𝑥, 𝑑), a correspondence was established between strain norm, ‖𝑬‖ (§2.5), and probability 

of death due to impact, 𝑃. Fields of ‖𝑬‖ and 𝑃 were averaged across sample populations (§2.7.3).  

A mixed-effects linear regression model tested for the dependence of 𝑃  on ‖𝑬‖  and surface 

treatment. The response variable was 𝑃, while 𝑑, 𝑡, ‖𝑬‖, and surface treatment were fixed-effect 

predictor variables, including interactions. In an additional model, ‖𝑬‖ was used as the response, 

with 𝑑, 𝑡, and surface treatment as predictors. In both models, an independent random effect was 

added to account for sample to sample variation. In all analyses, residuals were checked for 

normality, confirming the models’ validity.  
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2.4 Results 

2.4.1 Bulk mechanics 

A custom device (Figure 2.1) impacted cartilage samples rapidly and consistently (Video 1). 

Impacts lasted 8 ms, with a time to maximum indentation of 3.7 ± 0.7 ms (mean ± standard 

deviation). Peak bulk strain and strain rate were 13 ± 4% and 4 ± 1 × 103 %/s. Peak force, bulk 

stress, and bulk stress rate were 8 ± 3 N, 2.3 ± 0.9 MPa, and 7 ± 3 × 102 MPa/s. Impact time, 

strain, force, and stress were not significantly different between surface treatment populations, as 

determined using unpaired, two-tailed t-tests ( 𝑝 = 0.7; 0.04; 3; 0.9 , respectively). No tissue 

swelling was observed over the 3-hour experiment. 

2.4.2 Microscale deformation 

Microscale strain norm and shear strain during impact were computed from fast-camera images, 

revealing characteristic maps of each (Figure 2.2). Strain norm was highly concentrated near the 

impact and shear strain fields had two characteristic lobes (Figure 2.2C,D). Peak shear strain was 

lower than peak strain norm. When the superficial layer was removed, strain fields had similar 

trends but lower values overall (Figure 2.3). Shear strain lobes were longer (𝑝 = 0.006) and 

oriented more vertically (𝑝 = 0.001) for surface-removed samples. 
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Figure 2.3. Average microscale shear strain patterns show variations with surface 

treatment. As compared to surface-intact samples (A), the lobes in surface-removed 

samples (B) became significantly more elongated (𝑝 = 0.006) and more vertically aligned 

(𝑝 = 0.001), based on principal component analysis. The dashed line indicates the axis of 

impact in each plot. The scale bar is 250 µm and the color and scale bars apply to both 

plots. 

2.4.3 Cell viability 

Cell death increased dramatically after impact, showing complex spatial and temporal evolution 

(Figure 2.4). For both sample populations, average probability of death due to impact in the region 

of interest (orange box) was highest near the surface (Figure 2.4C,D). This probability increased 

with time, though most cell death occurred by 2 hours. Regression modeling confirmed that time, 

depth, and their interaction were significant predictors of probability of death ( 𝑝 = 9 ×

10−292; 4 × 10−30; 4 × 10−193 , respectively). Cell death in control samples increased over 

3 hours, but only 15 percentage points. No dispersal of the EthD stain was observed after freezing. 
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Figure 2.4. Spatial and temporal evolution of chondrocyte death after impact. A 

representative confocal image sequence shows dead chondrocytes in an impacted, surface-

intact sample immediately following impact (A) and 3 hours after impact (B). Both images 

show the same location and the dashed line indicates the axis of impact. Plots (C,D) reflect 

the time- and depth-dependent increase in probability of cell death after impact, calculated 

from the region of interest (orange box) and averaged over all samples for surface-intact 

(C) and surface-removed (D) sample populations. With the surface intact, the peak is more 

confined to the superficial layer (𝑝 = 2 × 10−17). Depths less than 200 µm were excluded 

because this region exhibited nearly 100% death, invalidating analysis at these points. The 

scale bar is 250 µm. 
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Comparing surface treatment populations, the peak probability for surface-intact samples was 

confined to the surface layer while the pattern extended deeper for surface-removed samples (𝑝 =

2 × 10−17). Time evolution did not vary significantly between surface treatments (𝑝 = 0.6). 

2.4.4 Strain and viability correlation 

Average strain and probability of death due to impact showed strikingly similar patterns within 

but not across surface treatment groups (Figure 2.5A-D). Both patterns were concentrated near the 

impact but penetrated deeper with the surface removed (𝑝 = 3 × 10−7; 2 × 10−6, for strain norm 

and probability of death comparisons). The clear relationship between strain norm and probability 

of death due to impact (𝑝 = 2 × 10−68) was apparent in correlation plots (Figure 2.5E,F). This 

correlation varied slightly, albeit significantly, with depth and surface treatment ( 𝑝 = 2 ×

10−46; 1 × 10−13). For both populations, linear fits revealed a threshold of 8% microscale strain 

before any cell death occurred and a sensitivity of ~18% strain to produce ~50% probability of cell 

death at 3 hours.
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Figure 2.5. Microscale patterns of strain norm (A,B) and probability of death (C,D) 

averaged over all samples in each surface-treatment population show strikingly similar 

patterns within a given population. Average patterns are shown for both surface-intact 

(A,C) and surface-removed (B,D) populations and all data are plotted with respect to 

undeformed spatial coordinates. Both strain and chondrocyte death penetrated deeper into 

the samples when the superficial layer of cartilage was removed (𝑝 = 3 × 10−7; 2 ×

10−6 ). The dashed line indicates the axis of impact in each plot. Additionally, the 

probability of cell death after impact was strongly correlated with the microscale strain 

norm for all samples with the surface intact (E) or removed (F) (𝑝 = 2 × 10−68). In these 

plots, each data point represents one point from the tracked fast-camera grid of one sample 

and takes on values corresponding to the microscale strain and probability of death due to 

impact in the corresponding region of that sample. Points are color-coded based on their 

depth from the sample surface. Linear fits are shown for each population and the text 

indicates the strain-axis intercept (threshold), the slope (sensitivity), and the coefficient of 

determination (𝑅2) of the fit. As before, data within 200 µm of the surface were omitted. 

The scale bar is 250 µm and applies to A-D. 
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Correlation was also performed using other Lagrange strain scalars (§2.7.4). Some correlations 

were similarly high (𝑅2 = 0.91; 0.94; 0.95, for the determinant, P2 norm, and deviatoric spectral 

norm, respectively) while others were lower ( 𝑅2 = 0.11; 0.05 , for shear strain and trace, 

respectively). 

2.5 Discussion 

The goal of this study was to understand the relationship between the microscale mechanical 

environment in cartilage during rapid loading and subsequent changes in chondrocyte viability. 

Additionally, we investigated how mechanical heterogeneity mediated chondrocyte response. 

Thus, a custom method was developed, integrating fast camera and confocal microscopy with 

spring-loaded impact. This method allowed chondrocyte death to be correlated with rapid tissue 

deformation on the microscale. 

Results showed that, as depicted in Figure 2.5, the probability of cell death due to impact was 

highly correlated with the Lagrange strain norm, enabling the threshold and sensitivity of cells to 

microscale mechanics to be determined. This correlation was similarly strong for both surface-

intact and surface-removed samples, revealing that, for loading at these high rates, strain norm – 

rather than any depth-dependent cellular sensitivity, for example51 – explains a large majority of 

the variation in chondrocyte death (93%, for surface-intact samples). 

The results further revealed a protective role for the superficial layer. The superficial layer of 

cartilage is more compliant than the bulk25,36,38,49,52,53, and thus strain was concentrated in this 
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region, as reflected in Figs. 2 and 3. Since cell death was so highly correlated with strain, it, too, 

was concentrated in the superficial region of surface-intact samples, as observed previously54–58. 

However, because impacts were energy controlled, surface-removed samples experienced lower 

strains at their surface, potentially explaining their lower peak probability of death 

(Figure 2.4C,D). Overall, however, both strain and cell death penetrated significantly deeper after 

surface removal, reflecting the more homogeneous mechanical properties of the remaining tissue. 

Thus, by concentrating the strain, the compliant surface layer of healthy cartilage protects the 

deeper tissue. This novel design principal may be important for the robustness of cartilage and 

could potentially be applied in other engineering applications, including tissue engineering.  

These results may also be useful when interpreting in the context of injury mechanics across many 

spatial scales. For example, recent studies have incorporated cartilage’s mechanical 

inhomogeneities into models, translating bulk loading into the microscale loading environment59–

62. Given the results of this study, subsequent cell death can be inferred from microscale mechanics 

at high rates without invasive procedures.  

Temporal trends of cell death were also studied. After impact, cell death saturated in about 2 hours 

(Figure 2.4C,D), suggesting a time window following joint trauma in which drugs or therapeutics 

could be most effective. Notably, as determined by preliminary experiments, EthD could diffuse 

and stain compromised cells within a few minutes, while an apoptotic response typically develops 

in hours or days63,64. Thus, the acute  chondrocyte death observed here was most likely necrotic, 

in agreement with Chen et al.50 (§2.7.5). 
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One limitation of this study is the use of immature cartilage, which may be more susceptible to 

damage56,65. However, immature and mature tissues are mechanically similar49 and immature 

tissue provides a consistent framework for studying injury66,67. Samples also exhibited extensive 

cell death at the surface, masking surface chondrocytes which may respond differently to loading 

and potentially altering the sensitivity of nearby, viable cells. This limitation may be overcome by 

storing samples in culture conditions. Additionally, the impact geometry and the material of the 

impacting rod did not directly mimic in vivo loading. Instead, the unconfined compression and 

small-diameter impacting rod were used to impose a wide range of strains in the field of view, 

enabling strain and cell death correlations to be rigorously investigated. Translating loading from 

the bulk scale to the microscale will depend strongly on the geometry and boundary conditions, 

potentially affecting cartilage response68,69. However, as a physical property, the microscale strain 

thresholds would not be expected to change with loading and geometry. Though the source of the 

strain may not be observed in vivo, the general relationship between strain and cell death should 

hold for a broader variety of loading scenarios at similar rates. It should be noted that, at these 

length scales, this study cannot measure cellular strains or mechanotransduction mechanisms, but 

instead measures strain and cell death as continuous distributions on the scale of tissue 

inhomogeneity70. 

Previous studies have similarly linked impact mechanics to cartilage damage, both mechanical 

(e.g. fissuring) and biological (e.g. chondrocyte death)40,42,43,58,71–74. In this study, impacts (0.1 J 

energy, 2 MPa stress) caused chondrocyte death without fracture, implying that bulk cell death 

thresholds are below this level while fissuring thresholds are above. This energy is in agreement 
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with cell death thresholds implied or observed previously40,73, while stress thresholds are typically 

much higher42,74. 

More broadly, previous cartilage impact studies have failed to establish consensus regarding the 

thresholds and sensitivities of any damage measure to a given loading profile. Existing 

discrepancies (e.g., studies by Haunt. et al., Natoli et al., and Newberry et al.41,75,76) may reflect 

the large variety of impact protocols, geometries and boundary conditions. Moreover, tests in 

sufficiently different loading scenarios with respect to material behavior (e.g. gel diffusion rate77) 

cannot be reliably compared. Bulk measures are also limiting. Because cartilage is spatially 

inhomogeneous78, they may not adequately portray the local cartilage environment. Indeed, even 

if damage spreads, it is initiated locally – on the cellular scale for biological damage or on the fiber 

scale for matrix damage. 

The method presented here helps clarify how rapid mechanical signals correlate with cell 

responses. Fast-camera imaging enables the response of a true impact – rather than only the slower, 

so-called injurious compression – to be investigated on the microscale28, statistically linking strain 

and cell viability. Future studies will exploit these higher spatial and temporal resolutions to better 

understand damage initiation in cartilage. By varying microscale impact mechanics and geometry 

(e.g. strain, strain rate, rod size), thresholds and sensitivities of both biological changes and 

mechanical damage after impact can be determined. Additionally, this setup can address the 

effectiveness of various drugs and dosage protocols for preventing or reducing acute chondrocyte 

death. Overall, by studying micrometer- and millisecond-scale responses, this experimental 

approach provides a powerful tool for clarifying the details of cartilage injury response and PTOA 

initiation after trauma. 
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2.7 Supplemental information 

2.7.1 Analysis of fast-camera images 

Two frames from fast camera videos were analyzed to extract microscale deformation patterns. 

Each frame was analyzed in MATLAB, using template matching to find the (𝑥, 𝑦) locations of the 

many “bright cross” and “dark square” parts of the photobleached grid, where (0,0) corresponds 

to the impact center, i.e. the first point of contact between the impact tip and the sample. Combined, 

these grid points produced a diagonal square lattice of coordinates, as shown by blue and yellow 

circles (Figure 2.2 and Figure 2.6). These points were tracked between frames to visualize the 

cartilage deformation. Neighboring points were separated by roughly 85 µm, thus setting the 

spatial resolution. This lattice was divided into triangles of nearest neighbors. Note that each point 

has four associated triangles, except for those points at the edge of the field of view, which have 

fewer. In Figure 2.6, the four nearest-neighbor triangles of one point are outlined, showing the 

microscale reference (Figure 2.6A) and deformed (Figure 2.6B) configurations around that point. 

For each frame, each nearest-neighbor triangle was recast as two vectors, 𝒗(1)and 𝒗(2), which give 
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the position of the second and third vertices relative to the first. Using these vectors, the 2D 

deformation gradient tensor 𝑭, which maps material points between states of deformation and is 

the fundamental measure of deformation in continuum mechanics, was calculated using 

Equation. 2.1 As implied by the notation, the first frame, just prior to impact tip collision, was 

taken as the undeformed, or reference, configuration (𝑡 = 𝑡0), while the frame taken at peak 

indentation (𝑡 = 𝑡1) was used as the deformed configuration.  

 

Figure 2.6. Fast-camera images show the cartilage photobleached grid just before impact 

(A) and at peak indentation (B). In the bottom frames, tracked grid points are overlaid on 

the original images. The orange box highlights local deformation in one part of the grid by 

outlining the four triangles formed by connecting one yellow point with its four nearest 

neighbors. The scale bar is 500 µm. 
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 𝑭(𝑥, 𝑦) = [𝒗(1)(𝑥, 𝑦, 𝑡1) 𝒗(2)(𝑥, 𝑦, 𝑡1)] [𝒗(1)(𝑥, 𝑦, 𝑡0) 𝒗(2)(𝑥, 𝑦, 𝑡0)]−1 (2.1) 

For each triangle, the deformation gradient tensor was subsequently used to calculate the Lagrange 

strain tensor at peak indentation (Equation 2.2). Two scalar measures of the Lagrange strain were 

calculated for each triangle: the spectral norm and the magnitude of the shear component. At each 

grid point, (𝑥, 𝑦), scalar quantities of the norm and shear strain from the four nearest-neighbor 

triangles were averaged together. 

 𝑬(𝑥, 𝑦) = 1

2
(𝑭T𝑭 − 𝟏) (2.2) 

Note that optical aberrations were observed to have no noticeable affect the positions of the grid 

points. This was confirmed by analyzing the grid spacing with the sample flat on the glass slide 

and elevated in the impactor with a fluid layer in-between. Grid spacings were not significantly 

different between the two configurations (p = 0.93, as determined by a student’s T-test). 

As noted in the main text, strain norm and shear strain magnitude were extracted from the Lagrange 

strain tensor at each point in space. Error in both strain measures was estimated to be 0.01 strain, 

with an additional offset bias of 0.01 strain since these are positive quantities. Error was estimated 

via deformation analysis of an un-impacted sample with a static grid and via deformation analysis 

for an impacted sample performed multiple times.  

Data from multiple samples were combined to produce average scalar strain fields for surface-

intact and surface-removed sample populations (see §2.7.2). For both scalar measures, the standard 

deviation of sample-to-sample variation was 0.03 strain. 
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2.7.2 Image algorithm to locate cells in confocal images 

Confocal images of EthD signal were processed in MATLAB to find the (𝑥, 𝑦) locations of dead 

cells. The algorithm consisted of the following steps: First, the highest 10% and lowest 5% of 

grayscale values were discarded (i.e. set to high or low saturation values). Then, a median filter 

(MATLAB function medfilt2) was used for background subtraction, followed by adaptive 

histogram equalization (adapthisteq) to remove intensity variations across the image. 

Grayscale morphological dilation (imdilate) with a disk shape (strel) was then performed to 

extend regions of local maxima. Finally, connected regions of constant grayscale value were 

segmented, discarding regions with extreme areas or low intensities. For each segmented region, 

or cell, the spatial location was calculated as the region’s centroid weighted by the intensity of the 

original image (regionprops), where (0,0) corresponds to the impact center. For all filtering 

described, the window size was approximately equal to the diameter of a chondrocyte (10 pixels, 

in this case). Figure 2.1 shows an example confocal image (surface intact sample, at 3 hours after 

impact). White dots are overlaid to highlight cell positions located by the algorithm. 
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Figure 2.7. (A) A section of one confocal image shows dead cells in a surface-intact sample 

3 hours after impact. Cell locations found using the image processing algorithm as 

indicated by white dots. (B) A zoomed view clearly shows individual dead cells. The scale 

bar is 100 µm. 

2.7.3 Averaging scalar fields across multiple samples 

Scalar fields (i.e. 2D spatial maps) of shear strain, strain norm, or probability of death due to impact 

were averaged across multiple samples to produce average scalar fields of each quantity (e.g. 

Figs. 2,4). The same method was used to average each of these scalar fields: To combine fields 

from multiple samples, the fields were first represented as a scatter of points (𝑥, 𝑦, 𝑧), where (𝑥, 𝑦) 

are the spatial dimensions and z is the scalar measure of interest (i.e., shear strain, strain norm, or 

probability of death due to impact). Second, these points were all plotted together and interpolated 

onto a regularly spaced grid. Thirdly, these points were smoothed using a Gaussian filter with a 

window size and standard deviation of 250 µm and 80 µm, respectively. Finally, this smoothed 
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field was resampled at the original (𝑥, 𝑦) points, producing a scatter of points (𝑥, 𝑦, 𝑧̅) representing 

the average, smoothed field of the scalar measure of interest. 

2.7.4 Microscale patterns and correlations for all Lagrange strain components 

 
Figure 2.8. Average microscale strain patterns (i,ii) and their correlation with the 

probability of cell death due to impact (iii,iv) for the three components of the Lagrange 

strain tensor: strain in the lateral direction (A), shear strain (signed) (B), and strain in the 

depth direction (C). Any correlation with shear strain is clearly nonlinear and so regression 

lines and equations are not shown for (B). As before, data within 200 µm of the surface 

were omitted. The scale bar is 250 µm and applies all strain patterns. 
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2.7.5 Transient chondrocyte permeability 

Ethidium homodimer-1 (EthD), the nuclear stain used to identify dead chondrocytes in these 

experiments, is well established and has been used to identify dead cells in myriad contexts79–81. 

The staining mechanism for this dye, as well as many other common “dead cell” stains, relies on 

the fact that the molecule is cell-impermeant and cannot normally penetrate into a cell’s membrane. 

Only when a cell becomes abnormally permeable (e.g. if it breaks apart) can EthD enter the cell 

and bind to DNA, eliciting a conformational change which results in the observed red fluorescence. 

One issue associated with the method described in this paper is the fact that once stained with 

EthD, a cell cannot generally “un-stain”. Thus, there is the potential that cells are only transiently 

permeable and that some of the cells stained as “dead” actually recover their membrane 

impermeability, either during the 3-hour window observed here or over longer time scales. 

To check for transient permeability, three test samples were dissected and immediately impacted 

in sterile conditions, following the impact protocol described in this paper. Following impact, 

samples were returned to sterile media and incubated. At 24 and 48 hours after impact, samples 

were subsequently stained with “dead cell” stains, YOYO-1 and TOTO-3 (Molecular Probes, 

Eugene, OR), which also rely on membrane impermeability but fluoresces at different 

wavelengths. If, during the two days after impact, a cell recovered its membrane integrity, then 

that cell would stain in one image but not in one of the subsequent images. Thus, the EthD images 

taken at 3 hours after impact were registered to and manually compared with images of the same 

sample taken with the different stains at 24 and 48 hours after impact. It was found that less than 

1% of cells indicated any signs of transient permeability. Although this is not an exhaustive proof, 
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it provides strong evidence for the fact that chondrocytes stained during the impact experiments 

described in this paper are, in fact, dead and remain so during and after the experiment. 
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CHAPTER 3. TRACKING CHONDROCYTE FATE REVEALS THAT 

MITOPROTECTIVE THERAPY ELIMINATES PERACUTE, STRAIN-

DEPENDENT MITOCHONDRIAL DYSFUNCTION AFTER ARTICULAR 

CARTILAGE IMPACT 

Bartell, L. R., Fortier, L. A., Bonassar, L. J., Cohen, I., Delco, M. L. In preparation. 

3.1 Abstract 

Post-traumatic osteoarthritis involves the mechanical and biological deterioration of articular 

cartilage within joints after injury and is a growing problem in healthcare. Recently, mitochondrial 

dysfunction and altered cellular respiration have been associated with acute cartilage deterioration 

after injury. This finding is particularly important because recently-developed mitoprotective 

drugs, such as SS-peptides, have shown success for preserving mitochondrial structure and 

function in other mitochondria-mediated diseases. It is not known, however, if cartilage injury 

induces structural changes within the mitochondria, to what degree mitochondrial dysfunction in 

cartilage depends on the mechanics of injury, or the time frame over which such dysfunction 

develops. Similarly, it is unknown if SS peptide treatment can preserve mitochondrial structure 

and function after cartilage injury. Here, we combined rapid indentation, fast-camera elastography, 

and longitudinal fluorescence assays to show that impact induces mechanically-dependent 

mitochondrial depolarization within 15 minutes after injury. Using electron microscopy, we further 

show that impact induces rapid structural changes in mitochondria that are related to reduced 

mitochondrial function, namely swelling and loss of cristae structure. Remarkably, we find that 
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SS-peptide treatment prior to impact protects mitochondrial structure and preserves mitochondrial 

function at a level comparable to that of un-impacted control samples. As such, this study reveals 

the peracute kinetics of mitochondrial dysfunction and shows that the preservation of 

mitochondrial structure is a promising therapeutic target for peracute, injury-induced cartilage 

damage. 

3.2 Introduction 

Post-traumatic osteoarthritis (PTOA) is a common cause of disability and the prevalence of OA is 

growing as the population ages, yet no treatments are available to prevent this joint disease82,83. A 

hallmark of OA is the mechanical and biological deterioration of articular cartilage, the soft tissue 

that provides load dissipation and a low friction surface for joint motion1. Articular cartilage is 

composed primarily of a dense, poro-viscoelastic extracellular matrix and chondrocytes, the sole 

cell type in cartilage. Despite their small numbers, chondrocytes are primarily responsible for 

maintaining cartilage homeostasis63,81. Chondrocyte function is regulated in part by mechanical 

stimuli, where moderate loading is beneficial, but rapid or excessive loading induces cell death 

and initiates catabolic responses that lead to cartilage matrix degradation5,27. These responses to 

injurious loading can develop over acute time scales (hours to days) or longer2. Recently, a 

peracute (minutes to hours) necrotic response was also revealed, and this rapid cell death was 

correlated with the strain experienced during an ex vivo injury84. Despite these important 

observations, the mechanism by which mechanical signals lead to the peracute progression of 

cartilage damage after injury has not been fully established. 
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Importantly, mounting evidence suggests that mitochondria are a central mediator of the peracute 

injury response in articular cartilage, but much remains unknown about the relationship between 

cartilage injury and mitochondrial dysfunction. Mitochondrial and respiratory dysfunction are 

known to occur in late stage OA and early-chronic OA85–88, and have been observed within six 

hours after injury89. Oxidative stress and apoptosis have also been observed as acute responses to 

cartilage injury and can be mediated by mitochondria via the caspase cascade2,90–96. However, the 

kinetics of mitochondrial dysfunction in the peracute time frame after injury remain unknown. 

Additionally, mitochondria are mechanically connected to their intra- and extra-cellular 

environment, and thus could act as mechanotransducers of cartilage injury93. One ex vivo wear 

model revealed that acute mitochondrial dysfunction is related to sliding strain96, but it remains 

unknown if a similar response develops after rapid injurious loading or to what degree such 

mitochondrial dysfunction depends on the injury mechanics, especially peracutely.  

Injury-induced mitochondrial dysfunction in cartilage is especially interesting because it may 

present a promising therapeutic target. Broadly, mitochondria rely on the efficiency of the electron 

transport chain (ETC) to build an electrochemical gradient, or polarization, across their inner 

membrane, which in turn drives energy production. As such, loss of membrane structure and 

polarity are hallmarks of mitochondrial dysfunction and altered cellular respiration97. If such 

structural and functional mitochondrial changes are mediators of injury-induced dysfunction in 

articular cartilage, they may be a druggable target. In particular, recently-developed mitoprotective 

SS-peptides are known to localize to the inner mitochondria membrane, where they stabilize and 

protect membrane structure98. Indeed, SS-peptides have shown promise for treating other 

mechanically-induced, mitochondria-mediated diseases and are currently in clinical trials for 
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treating ischemia reperfusion injury99–101. One initial study suggests that SS-peptides can reduce 

cell death and matrix degradation 24 hours to 1 week after cartilage injury89. However, it is 

unknown if SS-peptides can prevent impact-induced mitochondrial dysfunction, especially 

peracutely. Similarly, the mechanism of action for SS-peptides in cartilage is also unknown. As 

such, determining if mechanical injury of cartilage induces loss of mitochondrial structure and 

polarity, and testing SS-peptides to reverse such dysfunction, would show that these changes 

present a druggable target for cartilage injury. 

Understanding how chondrocyte mitochondria respond to their mechanical environment during 

injury requires observing both the mechanical and biological response of cartilage at high spatial 

and temporal resolutions, which presents a challenge experimentally. Impact loading must be fast 

to be considered injurious28 and cartilage material properties vary over tens of microns26,102. Thus, 

to observe local tissue deformation in situ during injurious loading, data must be collected at rates 

around 1,000 points per second and with micon-scale spatial resolution. A fast-camera 

elastography technique was recently developed to enable this rapid mechanical analysis84. 

Additionally, to observe peracute chondrocyte and mitochondrial function, individual cells’ 

behavior must be tracked over time with a temporal resolution of minutes, which could be 

accomplished using optical microscopy and fluorescent probes. However, optical microscopy 

cannot resolve the morphology and internal structure of individual mitochondria and so electron 

microscopy is commonly utilized to observe mitochondrial structure in fixed samples103. Testing 

the mechanical dependence of peracute mitochondrial dysfunction after cartilage impact would 

require combining all of these techniques to observe chondrocytes in situ during injurious loading. 
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In this study, we considered two hypotheses: first that impact injury induces rapid, mechanically-

dependent dysfunction and structural degradation of chondrocyte mitochondria and second, that 

SS-peptides protect the mitochondrial structure and prevent this dysfunction. To test these 

hypotheses, we combined advanced techniques from both mechanics and biology to reveal the 

complex relationship between injurious loading and individual chondrocyte behavior.  In 

particular, we used longitudinal confocal microscopy with computer vision analysis to track a large 

number of individual chondrocytes in an ex vivo injury model and correlated their behavior with 

local injury mechanics obtained via fast camera elastography. We further utilized electron 

microscopy to confirm structural and morphological changes in mitochondria and observed how 

all of the responses changed with SS-31 treatment. 

3.3 Results 

3.3.1 Temporal evolution of mitochondrial depolarization after impact 

In order to study mitochondrial depolarization after cartilage injury, we developed a longitudinal 

microscopy technique to automatically track thousands of individual cell fates over time and space 

using computer vision, and applied this method in an established ex vivo injury model84,104. Paired 

hemi-cylindrical cartilage explants were mounted side-by-side on a cartilage impact device in a 

shared PBS bath (Figure 3.1). One hemi-cylindrical sample was impacted with a 0.8 mm diameter 

rod while the second served as a no-impact control. This geometry exposed the tissue to a wide 

range of strains in a relatively small field of view, enabling correlations between cellular 

dysfunction and injury mechanics to be rigorously investigated. To track temporal changes in 

cellular function after injury, samples were stained with a 3-stain fluorescence assay, directly 
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visualizing both the polarity of the inner mitochondrial membrane and non-specific cell death. 

Samples were imaged at multiple locations longitudinally, before and up to 60 minutes after 

impact. At each time point, segmented cells were classified into one of 3 possible states: polarized 

mitochondria, depolarized mitochondria, or dead, based on each stain's intensity distribution in the 

given cell (Figure 3.2). In a subset of experiments, paired samples were treated with 1 µM SS-31 

peptide 30 minutes prior to impact in order to test the proposed treatment mechanism. SS-31 

treatment remained in the bath surrounding both samples throughout the experiment. 

Cartilage samples showed a rapid and pronounced wave of mitochondrial depolarization after 

impact that was suppressed by SS-31 treatment. In untreated samples, the fraction of chondrocytes 

exhibiting mitochondrial depolarization increased rapidly within 15 minutes after impact, 

followed by a more gradual rise for the duration of the experiment (Figure 3.3, black lines). For 

these untreated samples, cell death also increased gradually over the experiment, in agreement 

with previous results84. Indeed, without treatment, both mitochondrial dysfunction and cell death 

were each higher in impacted samples, as compared to no-impact controls (p<1.2×10−6 for all 

t>0 min against the null hypothesis that impact does not affect the response). As expected, the no-

impact control groups showed only slight depolarization at the end of the experiment and 

negligible cell death throughout, regardless of treatment (p>0.01 for all t>0 min, against the null 

hypothesis that, without impact, treatment does not affect response). After treatment, while impact 

still induced more mitochondrial dysfunction (p<1.8×10−8 for t>0 min) and cell death (p<2.6×10−11 

for t>3 min) as compared to no impact, the level of dysfunction was dramatically lower. In fact, 

treatment with SS-31 peptide significantly suppressed both the mitochondrial depolarization and 

cell death observed after impact (Figure 3.3, blue lines; p<1.1×10−3 for all t>0 min against the null 
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hypothesis that treatment does not affect depolarization in impacted samples; p<4.5×10−3 for t[9, 

30] min against the null hypothesis that treatment does not affect cell death in impacted samples). 

 

Figure 3.1. Experimental methods. (a) Cylindrical explants were dissected from medial 

condyles of bovine stifles and bisected to created paired samples. (b) Samples were stained 

with a 3-color assay for mitochondrial polarity and mounted to the stable backplate of a 

custom impactor. This test frame was subsequently mounted on a confocal microscope. 

(c) Paired hemi-cylindrical samples were mounted side-by-side on the backplate such that 

the two were in the same fluid bath but only one was impacted, while the second served as 

a non-impacted control. Samples were imaged at various locations relative to the impact (8 

square fields of view; 5 on the impacted sample, 3 on the non-impacted sample). 

(d) Samples were imaged at all locations longitudinally, including before and up to 

60 minutes after impact. For treated samples, SS-31 peptide treatment was added to the 

PBS bath surrounding both hemi-cylinders 30 minutes before the first image.
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Figure 3.2. Image segmentation and cell classification. (a) An image taken at the first time 

point, immediately before impact, shows characteristic staining pattern. In this 

mitochondrial assay, red staining highlights polarized mitochondria, green staining 

highlights all mitochondria regardless of polarity, and blue staining highlights dead cell 

nuclei. Dashed rectangle indicates region highlighted in (b). Scale bar indicates 100 µm. 

(b) Images were subsequently analyzed to segment and classify cells as indicated by 

colored outlines. Cell state, as determined by the color distribution in each cell, is indicated 

by the color of the segmentation outline. (i) Only cells that had polarized mitochondria (red 

outlines) before impact were tracked longitudinally. (ii) Observing the same location at 15 

minutes after impact, some cells changed from polarized to depolarized (green outline) or 

dead (blue outline). Scale bar indicates 25 µm. 
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Figure 3.3. Mechanical impact induces rapid mitochondrial depolarization and gradual cell 

death that are both significantly reduced by SS-31 treatment. (a) Without treatment (black 

lines), the average fraction of cells with depolarized mitochondria increased dramatically 

in the first 15 minutes after impact and was higher in impacted samples as compared to 

non-impacted controls (p<1.3×10−41). With treatment (blue lines), impacted samples 

showed dramatically less depolarization (p<1.1×10−3), especially in the first 15 minutes, 

while non-impacted controls were unaffected by treatment (p>0.01). (b) Fractional cell 

death in impacted samples was smaller and increased gradually over time but was still 

significantly reduced by SS-31 treatment (p<4.5×10−3, 9-30 min after impact). Points show 

the mean across samples (i.e. animals) and error bars indicate standard error of the mean. 

Untreated and treated results reflect the responses of samples from 5 and 4 animals, 

respectively. Statistical comparisons were evaluated using mixed effects models (Table 

3.1, Table 3.2). 
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3.3.2 Strain-dependence of peracute mitochondrial dysfunction 

To establish the role of mitochondria in mediating mechnotransduction during injury, we 

correlated mitochondrial dysfunction with the mechanics of impact. In a separate set of samples, 

hemi-cylinders were marked with fluorescent microspheres and imaged during rapid impact injury 

using a fast-camera (7.1, Vision Research, Wayne, N)104. Fast-camera movies were analyzed using 

digital image correlation105 and averaged to compute the local strain tensor field experienced 

during injury at maximum indentation. In order to relate cell state data with strain data, cells 

tracked via confocal microscopy were binned in 2D, using the same spatial grid as the strain 

analysis. For each spatial bin this produced both an average strain tensor and the average fraction 

of cells in each state. Using a mixed-effects model, we evaluated these correlations over varying 

impact and treatment conditions.  

We found that spatial patterns of and correlations between mitochondrial function and impact 

strain support our two hypotheses: mitochondrial depolarization after impact is mechanically-

mediated and SS-31 treatment prevented this mechanically-dependent dysfunction. At 15 minutes 

after impact, the average fractional mitochondrial depolarization in untreated samples was highest 

near the impact location and decreased further away (Figure 3.4a). In contrast, samples treated 

with SS-31 peptide showed much less mitochondrial depolarization with no obvious spatial pattern 

(Figure 3.4b). The local average strain tensor field, as characterized by the Lagrange strain norm 

at peak indentation, was also highest near the impact and decreased further away (Figure 3.4b). 

Correlating mitochondrial dysfunction with the impact strain shows that, without treatment, 

mitochondrial depolarization 15 minutes after impact was highly correlated with the Lagrange 
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strain norm during impact (Figure 3.4c(i), black points; Pearson correlation coefficient R=0.68; 

mixed-model slope m=2.4; p=6.0×10−300 against the null-hypothesis of zero strain dependence). 

In contrast, SS-31 peptide treatment not only reduced the level of mitochondrial depolarization, 

but also reduced the correlation between strain and depolarization, confirming that SS-31 targets 

the mechanically-dependent mitochondrial dysfunction (Figure 3.4c(i), blue points; R=0.07; 

m=0.070; p=0.23 against the null hypothesis of zero strain dependence; p=7.5×10−131 against the 

null hypothesis of the same strain dependence regardless of treatment). All non-impacted samples 

experienced zero impact strain, by definition, and showed negligible mitochondrial depolarization 

with no obvious spatial pattern, as expected (Figure 3.4a,b,c(ii)). The full strain fields and time-

dependent correlations are detailed in Figure 3.6 and Figure 3.7. The statistical model used to 

evaluate relationships is detailed in Table 3.3. Collectively, these results demonstrate that 

mitochondria function is strongly dependent on tissue strain and support the hypothesis that 

mitochondria mediate chondrocytes’ response to injury. Because mitochondrial function depends 

on its inner membrane structure, these results suggest that impact may induce structural changes 

in mitochondria, as well. 
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Figure 3.4. Treatment with SS-31 eliminates strain-dependent mitochondrial 

depolarization. (a) (i) Without treatment, the local fraction of cells with depolarized 

mitochondria is high near the impact location and decreases farther away, while non-

impacted samples show nearly zero depolarization. (ii) In contrast, samples treated with 

SS-31 show minimal depolarization after impact, while depolarization in non-impacted 

samples remains nearly zero. Scale bar indicates 250 µm. (b) At peak displacement during 

impact, Lagrange strain norm is highest near the impact and decreases further away, while 

no-impact samples have zero strain, by definition. Scale bar indicates 250 µm. (c) (i) In 

impacted but untreated samples, depolarization is correlated with the local strain 

(p=8×10−308), but after SS-31 treatment this correlation is eliminated (p>0.01). Each point 

corresponds to one spatial bin. Lines indicate the best fit and m values indicate the 

associated strain norm coefficients (i.e. slope). Note: * indicates significantly reduced 

strain correlation after treatment (p=2×10−103). (ii) A Tukey box plot shows the distribution 

of fractional depolarization in non-impact samples (zero strain), which remains low for 

both treatment groups. All plots show depolarization at 15 minutes after impact and 

Lagrange strain at peak displacement during impact. Untreated and treated results reflect 

the response of paired samples from 5 and 4 animals, respectively. Statistical comparisons 

were evaluated using a mixed effects model (Table 3.3). 
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3.3.3 Structural changes in mitochondria after impact 

We used transmission electron microscopy (TEM) to investigate the mitochondrial structure and 

morphology. Separate samples were impacted as described above but without fluorescent staining. 

As before, a subset of samples were treated with 1 µM SS-31 before impact. Samples were fixed 

30 minutes after impact, sections were harvested from the tissue immediately below the impact 

location, and TEM images were collected at 120 kV. 

Chondrocytes in no-impact samples displayed normal, elongated mitochondrial morphology with 

distinct cristae structure in the inner mitochondrial membrane (Figure 3.5a). After impact, 

however, chondrocytes were consistently abnormal, with swollen mitochondria and little to no 

apparent cristae structure (Figure 3.5b). In contrast, samples that were treated with SS-31 peptide 

maintained normal mitochondrial morphology and retained cristae structure after impact (Figure 

3.5c).
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Figure 3.5. Electron microscopy reveals that SS-31 treatment preserves cristae structure in 

mitochondria. (a) Chondrocytes in an untreated, non-impact sample display normal, 

elongated mitochondrial morphology (top) and well-defined cristae structure (bottom). (b) 

After impact, untreated mitochondria appear ovate, swollen and lack cristae structure. (c) 

In contrast, samples treated with SS-31 have normal mitochondrial morphology with 

preserved cristae structure after impact. For imaging, samples were fixed 30 minutes after 

impact and images were collected in locations directly under the impact, corresponding to 

the imaging locations outlined in Figure 3.1c. Text and arrow labels on each image indicate 

extracellular matrix (“ECM”), mitochondria (“MT”), nucleus (“N”), and cristae (“C”). In 

low magnification images (top row) scale bar indicates 500 nm. In high magnification 

images (bottom row) scale bar indicates 100 nm.
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3.4 Discussion 

Recent evidence suggests that mitochondria are important to cartilage’s response to injury and may 

be a promising therapeutic target. However, important knowledge gaps remain, especially 

regarding the role of mitochondria in mediating cartilage’s response to mechanical injury, the time-

frame over which their response develops, and if there are structural and functional changes in 

mitochondria that present druggable targets for cartilage injury. To investigate the role of 

mitochondria in cartilage’s response to injury, we tracked individual chondrocyte behavior with 

longitudinal fluorescence assays and utilized TEM imaging of mitochondrial structure, revealing 

the peracute development of cellular dysfunction after impact. 

Our results showed that mitochondria depolarize within 15 minutes after impact and this 

depolarization was highly correlated with the strain experienced during injury, implicating 

mitochondria as important mediators of cartilage’s injury response. This depolarization response 

is much faster than previously-observed effects, including the initial wave of necrotic cell death 

that develops within a few hours after injury40,74,81,84, indicating that mitochondrial dysfunction is 

one of the first consequences of cartilage injury. Furthermore, the high correlation between strain 

norm and mitochondrial depolarization indicates that much of the observed cellular dysfunction 

can be directly attributed to the local strain experienced during injury. This correlation parallels 

the mechanical-dependence of the non-specific (likely necrotic) cell death observed 

previously40,84, implying that mitochondrial dysfunction may also mediate the known wave of 

peracute chondrocyte death after injury. Notably, while a large fraction of cells exhibited 

mitochondrial dysfunction, a smaller fraction exhibited cell death, indicating that not all peracute 

mitochondrial dysfunction evolves immediately into cell death. Not only is this observation in 
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agreement with previous studies91, but it reflects the complex peracute-to-acute evolution of 

chondrocyte injury responses89. Note that there was a non-zero amount of cellular dysfunction 

observed in control samples (Figure 3.8), which likely results from the imperfect environmental 

conditions during imaging, including laser exposure and the PBS bath at room-temperature and 

atmospheric oxygen. Nonetheless, the level of dysfunction in control samples evolved slowly and 

was small compared to that induced by impact. Importantly, electron microscopy of chondrocyte 

mitochondria from impacted samples revealed structural changes in mitochondria after injury, 

inducing globular morphology and loss of cristae structure, both of which are hallmarks of 

mitochondrial dysfunction97. These changes also match those observed previously, including 

mitochondrial fusion and fission in response to stress, as well as fragmentation from tubular to 

globular shape within ten minutes after chemically-induced depolarization106,107. Moreover, it is 

known that mitochondrial cristae dynamically modulate the kinetics of energy production in cells 

and that loss of cristae impairs cellular metabolism, further suggesting that cristae structure may 

be a promising therapeutic target, in general108. As such, our observed changes in mitochondria 

structure can explain the loss of mitochondrial polarity that was directly observed in this study via 

confocal fluorescence imaging. Moreover, it is known that mitochondria are mechanically 

connected to the intra- and extracellular networks such that cell strain leads to mitochondrial 

strain93. Collectively, these results support a peracute mechanism by which impact strain leads to 

mitochondrial membrane damage and depolarization as well as other downstream effects, 

including cell death. 

To show that protecting mitochondrial structure is a potential therapeutic target for preventing this 

strain-induced dysfunction, we tested the effect of a promising new peptide, SS-31. Our results 
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showed that SS-31 treatment before impact dramatically reduced mitochondrial depolarization. 

Notably, treatment targeted the mechanically-dependent depolarization, as evidenced by the loss 

of correlation with strain after treatment. Mitochondrial protection was confirmed by electron 

microscopy, which further showed that SS-31 treatment before impact preserved mitochondria 

tubular morphology and cristae structure after impact. Because mitochondrial structure and 

function are linked108, this preservation of mitochondrial morphology may explain the 

corresponding retention of polarity observed via fluorescence. Moreover, these results show that, 

in chondrocytes, SS-31 acts to preserve mitochondrial structure. While a recent study showed that 

SS-31 treatment can reduce impact-induced chondrocyte apoptosis in the acute time frame after 

cartilage injury (i.e. days)89, this study further shows that pretreatment with peptide can also 

dramatically reduce the peracute (i.e. minutes to hours) cellular dysfunction and death. The 

previously-observed acute mitoprotection by SS-31 likely involves protection against oxidative 

damage via absorption of reactive oxygen species98,109,110, but these mechanisms of action take 

hours to develop and so the peracute protection observed in this study further suggests another, 

more immediately beneficial mechanism of mitoprotection which remains unknown.  

Although the complete mechanisms of mechanotransduction and mitoprotection in cartilage 

remain an active area of research, SS-peptides are a particularly promising therapeutic. SS-

peptides have shown promise for treating other mechanically-induced mitochondrial-based 

diseases, including glaucoma and ischemia reperfusion injury, and have proven safety and efficacy 

in clinical trials100,111. Moreover, SS-31’s mechanism of protecting mitochondrial structure and 

morphology is farther upstream, as compared to apoptotic responses that are likely mediated 

through the mitochondria89,91,108. Additionally, though this study only tested pretreatment, SS-31 
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can also reduce chondrocyte death and cartilage matrix degeneration when treating up to 6 hours 

after injury in an ex vivo system89. This ex vivo study also showed that SS-31 can diffuse through 

the dense cartilage matrix89. Overall, SS-31 is protective of mitochondrial structure and function 

and a promising potential treatment for injury-induced cartilage dysfunction that warrants further 

study in vivo. 

A further methodological implication of this study is to demonstrate the utility of image tracking, 

segmentation, and classification techniques for advancing scientific knowledge with microscopy-

based assays. Here, these automated techniques enabled us to track thousands of individual cells 

over space and time, facilitating both better statistics (i.e. more cells) and quantifiable correlations, 

especially in concert with local mechanical measurements. However, the methodological 

implications are much farther reaching. Fluorescence microscopy assays are commonly employed 

to observe cells in vitro and in situ, both within and beyond the field of orthopedic 

mechanobiology. Indeed, similar techniques are broadly applicable for any study that uses 

microscopy and fluorescence to assay cellular function. By developing the techniques in this study, 

we hope to champion the broad utility of computer vision and machine learning across orthopedic 

mechanobiology and beyond. 

Overall, by combining advanced techniques to understand local mechanics and cellular 

dysfunction, this study revealed the importance of mitochondria in cartilage’s response to 

traumatic injury. Our results show that mitochondria are central to chondrocyte’s response to 

trauma and that their structural degradation presents a promising therapeutic target. Indeed, the 

rapidity of the responses observed here and the fact that mitochondria are mechanically connected 

to their environment suggests that mitochondria could act as mechanotransducers during cartilage 
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injury, independent of other, more classically studied pathways. Importantly, this study also shows 

that SS-31 acts to protect mitochondrial structure and function in cartilage. Collectively, this study 

of rapid impact mechanics and peracute mitochondrial dysfunction in cartilage is an important step 

toward understanding the pathogenesis of post-traumatic osteoarthritis and targeting mitochondria 

for treatment. 

3.5 Methods 

3.5.1 Sample preparation 

Cylindrical explants, 6 mm diameter and 3 mm deep were dissected sterilely from the apex of the 

medial femoral condyle of neonatal bovines (1 explant per animal, N=9 animals; Figure 3.1a). 

Cylinders were cultured for approximately 8 hours in media (culture conditions: 37°C, 21% O2, 

5% CO2; media formulation: phenol free DMEM containing 1% FBS, HEPES 0.025 ml/ml, 

penicillin 100 U/mL, streptomycin 100 U/mL and 2.5 mM glucose). Explants were then bisected 

and maintained at room-temperature PBS for the remainder of experimentation. 

3.5.2 Fluorescence assay of cellular function 

To observe mitochondrial function and cell death, paired hemi-cylinders were stained with a 3-

color fluorescence assay: (1) 30 minute incubation in 10 nM tetramethylrhodamine, methyl ester 

(TMRM), which concentrates in mitochondria based on the proton gradient across their inner 

membrane, thus reflecting mitochondrial polarity (i.e. potential); (2) 50 minute incubation in  

200 nM MitoTracker Green, which localizes to all mitochondria regardless of polarity; (3) 30 

minute incubation in 100 nM Sytox Blue, a cell-impermeant nucleic acid stain which therefore 



59 

stains dead cell nuclei (all stains: ThermoFisher Scientific, Waltham, MA). After staining, paired 

hemi-cylinders were mounted side-by-side to the impactor and suspended in a bath of PBS 

throughout the remainder of the experiment. This bath included 100 nM Sytox Blue, in order to 

ensure that cells dying during the course of the experiment would take-up stain from the bath. For 

treated samples, 1 µM SS-31 peptide (provided by H. Szeto) was added to the bath and samples 

sat unperturbed in the bath for 30 minutes before proceeding with the experiment. 

3.5.3 Impact device 

In order to induce injury, samples were impacted using a custom impact device that utilizes a 

spring-loaded piston to deliver an energy-controlled impact84,104. Paired hemi-cylindrical samples 

were mounted side-by-side to the stable backplate of the impactor, as described previously84, such 

that one hemi-cylinder was centered in the path of the impact while the second served as a no-

impact control (Figure 3.1c). Samples were impacted with an 8 mm diameter stainless-steel rod, 

inducing a range of strains in a relatively small field of view. Based on previous characterization, 

this impact induced a peak stress of ~1 MPa and lasted about 5-10 ms. This loading rate and the 

magnitude of tissue-level strains were comparable to those that may be experienced in vivo during 

injurious, super-physiologic loading28. Note that, although the impact geometry does not mimic 

physiologic loading, it can impose a wide variety of strains at super-physiologic loading rates in a 

relatively small field of view, thus enabling correlations between impact strain and cellular 

function. Physiologic loading would induce a different distribution of strains in the tissue, but the 

response of cells to the microscale strain in their surroundings would not be expected to change. 

Also note that both hemi-cylinders shared the same fluid bath throughout experimentation. As 
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such, this setup did not prohibit potential signaling between the two samples before or after 

impact112. 

3.5.4 Confocal imaging of cellular function 

To image the fluorescence assay longitudinally, the impact device was mounted on an inverted, 

point-scanning confocal microscope with a 20× objective (LSM 880, Zeiss, Oberkochen, 

Germany). In this setup, the confocal views the depth-profile of the two hemi-cylinders, as 

depicted in Figure 3.1b,c, with a square field of view, 424 µm (1024 pixels) on a side. Images were 

collected at 8 difference locations (5 adjacent views on the impacted hemi-cylinder, and 3 on the 

no-impact hemi-cylinder, as depicted in Figure 3.1c). Images at each location were also collected 

longitudinally over time, 3 minutes before impact, and 0, 3, 6, 9, 12, 15, 30, and 60 minutes after 

impact (0 was immediately after impact, ~30 seconds), as outlined in Figure 3.1d. Images were 

collected with three color channels corresponding to the three-stain fluoresce assay: TMRM 

(polarized mitochondria) was excited at 561 nm, detected at 563 nm to 735 nm, and stored in the 

red channel; MitoTracker Green (all mitochondria) was excited at 488, detected at 499 nm to 

553 nm, and stored in the green channel; Sytox Blue (dead cells) was excited at 405 nm, detected 

at 414 nm to 479 nm, and stored in the blue channel. A characteristic image from one location is 

shown in Figure 3.2a.   

3.5.5 Image analysis of cellular function 

Confocal images at all locations and time points were analyzed to extract individual-cell behavior 

over time. This analysis included three steps: registration, segmentation, and classification, all of 
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which were performed using MATLAB (The MathWords, Waltham, MA). Density estimates were 

then used to compute local variations in the fraction of cells in each state. 

Registration. Confocal images at each imaging location were registered over time to correct for 

drift in the microscope stage. Intensity-based registration was performed between adjacent time 

points, allowing for rigid-body translation only. All images were then transformed back to the first 

time point’s frame of reference and regions in the newly-transformed space that no longer had 

complete time information were discarded (i.e. regions of the sample that move out of the field of 

view).  

Segmentation. Images at the first time point were segmented to locate individual cells. 

Segmentation was performed using a previously-described algorithm based on the watershed 

transform113, using parameters that were chosen to match the manually-counted cell density in a 

test image: equalization clip limit: 0.01; background size: 23 px; median size: 7 px; Gaussian 

radius: 9 px; minimum area: 300 px2; maximum area: 5000 px2; minimum signal: 0.1, i.e. 10% of 

full range. The resulting segmentation defines regions (i.e. cells) at the first time point. These same 

regions were also valid at all subsequent time points, since images had been transformed back to 

the first time point and chondrocytes are not mobile in their native tissue environment. 

Classification. Each identified cell was analyzed at each time point to classify it into one of three 

possible states: alive with polarized (i.e. functional) mitochondria, alive with depolarized 

mitochondria, and dead. For classification, scalar features were calculated for each cell at each 

time point and these features were then thresholded. Given the distribution of pixel intensities 

inside each cell region at a given time point, the following features were calculated: the 96th 
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percentile of blue pixel values (𝐵𝑡
(96)

), the 88th percentile of red pixel values (𝑅𝑡
(88)

), and the 

relative change in the 90th percentile of the red pixel values (�̅�𝑡
(90)

= (𝑅𝑡
(90)

− 𝑅0
(90)

) 𝑅0
(90)

⁄ ), 

where 𝐴𝑗
(𝑖)

 is the 𝑖th percentile of pixel values in channel 𝐴 at time 𝑗. The corresponding thresholds 

were 𝑇1 = 63, 𝑇2 = 27, and 𝑇3 = −0.4 (i.e. 40% loss), respectively, where pixel values were 8-

bit (i.e. ranging from 0 to 255). At the first time point, cells with 𝐵0
(96)

≤ 𝑇1 and 𝑅0
(88)

> 𝑇2 (i.e. 

without Sytox Blue staining and with strong TMRM staining) were marked as alive with polarized 

mitochondria. All cells not meeting this criteria at the first time point (i.e. cells that were dead or 

depolarized at the start of the experiment) were marked as invalid and not analyzed further. Within 

the cells that were alive and polarized at the start of the experiment, those with 𝐵𝑡
(96)

> 𝑇1 were 

marked as dead. Within the remaining cells that were alive and polarized at the start of the 

experiment and also not dead at time t, those with �̅�𝑡
(90)

< 𝑇3 (i.e. those that had lost more than 

40% of their original TMRM signal) were marked as alive with depolarized mitochondria. These 

features, the percentile levels, and their thresholds were all chosen to optimize the classification 

accuracy, as calculated from the confusion matrix produced by applying the classification to a 

subset of 546 cells that had been manually classified. Notably, the relative change in red signal 

(i.e. TMRM signal) over time was a better classification metric for loss of mitochondrial polarity 

than measures of the absolute intensity. This is intuitive, since even normal chondrocytes may 

have varying number of mitochondria with varying levels of polarity. As such, the relative loss of 

TMRM signal would be a better indicator of within-cell mitochondrial changes than the absolute 

intensity at a given time point. This observation reinforces the importance of following individual 

cells over time, rather than measuring population-averaged metrics at each time point.  
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Density estimates. The fraction of cells in each state was computed on a 100 µm spatial grid 

relative to the impact location. For each sample, Gaussian kernel density estimates were computed 

at each grid point, to determine the local number of cells in each state (polarized, depolarized, 

dead), as well as the total number of cells. Fractional state occupancy was computed by dividing 

by the total cell density, and areas that had less than 30 cells/mm2 total were discarded, in order to 

ensure adequate counting statistics. To compute average temporal trends, as shown in Figure 3.3, 

cell state data was averaged using cells within 212 µm of the impact laterally and 1000 µm deep 

3.5.6 Validation of experimental setup and cellular function assay 

In order to test the baseline level of cellular dysfunction arising due to systematic and 

environmental conditions, a no-impact control experiment was performed. For this variant, one 

pair of hemi-cylindrical samples was prepared, imaged, and analyzed as described above, except 

neither sample was impacted (from N=1 additional animal). In this situation, results showed 

negligible cell death and minimal depolarization (Figure 3.8, blue lines). This confirms that the 

experimental conditions induce minimal cellular dysfunction and thus the main results of this study 

are not masked by environmentally-induced changes. 

In order to validate the three-stain assay used to assess cellular function, two comparison 

experiments were performed. For each of these comparisons, a pair of hemi-cylinders was prepared 

as described above, except neither sample was impacted (from N=2 additional animals). For each 

comparison, images were collected at 0, 30, and 60 minutes and analyzed as described above. In 

the first comparison, 4 µM FCCP (carbonyl cyanide p-trifluoromethoxyphenylhydrazone; Sigma 

Aldrich, St. Louis, MO) was added to the impactor’s fluid bath immediately after the first imaging 
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time point. FCCP is an ionophore that causes mitochondrial depolarization by dissipating the 

proton gradient (transporting protons) across the inner mitochondrial membrane. For the second 

comparison, 2 µM oligomycin (Sigma Aldrich) was added to the impactor’s fluid bath 

immediately after the first imaging time point. Oligomycin causes hyperpolarization of the inner 

mitochondrial membrane by blocking the proton channel subunit of ATP synthase. As expected, 

after adding FCCP to the bath, nearly all of the cells were classified as alive with depolarized 

mitochondria (Figure 3.8, orange lines). After adding oligomycin to the bath, nearly all cells 

remained classified as alive and polarized (Figure 3.8, yellow lines), following the same trend 

observed in the no-impact control. In both cases, there was negligible cell death throughout the 

experiment, as expected. These two comparisons confirm that the staining assay and analysis 

procedure used in this study can appropriately capture changes in mitochondrial polarity over time.  

3.5.7 Electron microscopy of mitochondrial structure 

To assess mitochondrial morphology and structure, two hemi-cylinder pairs were prepared and 

impacted as described above, but without fluorescent staining. One pair was treated with SS-31 as 

described above, while the other was not. For each pair, samples were incubated at room 

temperature for 30 minutes after impact, then and fixed for transmission electron microscopy 

(TEM) imaging, as follows: First, samples were transferred to a petri dish on ice containing 2% 

Gluteraldehyde in 0.05M cacodylate buffer and fixed for 2 hours. Second, samples were then 

rinsed in cacodylate buffer and placed in 1% Osmium Tetraoxide for one hour on ice. Third, 

samples were rinsed and dehydrated in graded (increasing) concentrations of Ethanol (25%, 50%, 

70%, 95%, 100%), stained in 2% Uranyl Acetate in ethanol for 2 days, then placed in anhydrous 

acetone prior to stepwise embedding in 25%, 50%, 75% then 100% epoxy (EMbed 812, Electron 
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Microscopy Sciences, Hatfield, PA). Finally, samples were sectioned and imaged on an FEI Tecnai 

12 BioTwin Transmission Electron Microscope (ThermoFisher Scientific, Waltham, MA) at 

120kV, and 4008×2672 digital images were captured using a Gatan Orius® 1000 dual-scan CCD 

camera (Roper Technologies, Sarasota, FL), using Digital Micrograph (Gatan, Inc., Pleasanton, 

CA) software. 

3.5.8 Fast camera elastography 

Fast-camera elastography was used to track local strains in articular cartilage during rapid impact 

injury. For strain analysis, three hemi-cylindrical samples were obtained as described above, but 

were tested within 5 hours of dissection and not cultured overnight or treated with SS-31. Samples 

were not stained with the three-stain cellular function assay, but were instead coated with 

fluorescent microspheres, as described previously104. Samples were mounted to the impactor in a 

PBS bath, as described above, and the sample was imaged using a 10× objective and a high-speed 

camera (v7.1, Vision Research, Wayne, NJ) with illumination from a mercury arc lamp (HBO 100, 

Carl Zeiss Inc., Germany), thus enabling epi-fluorescence microscopy at 4,000 frames per second. 

In order to calculate local strain tensors in the sample at peak indentation, each of the three 

resulting fast-camera videos was analyzed using Ncorr, a 2D digital-image correlation tracking 

software (subset radius: 35 px; subset spacing: 5 px; strain radius: 5 points)105. For each 

independent strain tensor component, strain fields from all samples were shifted to place the point 

of impact at the origin, and Barnes smoothing interpolation was implemented to compute the 

average strain field on the same 100 µm spatial grid (relative to the impact location) that had been 

used to compute cell state density estimates114. 
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3.5.9 Statistical analysis 

Mixed-effects linear models were used to evaluate spatially-binned cell-state data and investigate 

significant trends across time, impact condition, impact strain, and treatment condition. The effects 

of time, impact condition, and treatment condition were evaluated as categorical variables, while 

strain was a continuous variable. The models also included a random effect for source animal and 

significance was set at p<0.01. For each model, the response variable was transformed to ensure 

normal residuals. When fitting, each model was reduced and residuals were checked for normality 

and homogeneity. After fitting, various statistical comparisons were evaluated using F-tests of the 

associated model contrasts with a Satterthwaite approximation for the degrees of freedom. Because 

impact state and strain are not independent (no-impact samples have zero strain, by definition), 

three models were fit to evaluate three slightly different objectives while maintaining linear 

independence of the effect variables. Similarly, since all observed cells were functional before 

impact, by definition, models were only fit to data after impact, namely time points 0 min through 

60 min, inclusive (-3 min excluded). First, to evaluate temporal trends shown in Figure 3.3, two 

linear models were fit, including all variables except strain. One model was fit using the fraction 

of dysfunctional cells as the response variable while the second model used the fraction of dead 

cells as the response. Next, to investigate the relationship between strain and fractional 

depolarization, as shown in Figure 3.4, a linear mixed-effects model was fit to the fractional 

depolarization from impacted samples only, including strain norm during impact but not impact 

state.  
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3.7 Supplementary information 

3.7.1 Lagrange strain field during impact 

 

Figure 3.6. Average components and scalar measures of the Lagrange strain during impact. 

Strain fields are shown for the various strain measures tested, including: (a) Exx, the axial 

strain in the lateral direction, (b) Exy, the shear strain, (c) Eyy, the axial strain in the depth 

direction (parallel to the impact), (d) the trace of the strain tensor (first invariant), (e) the 

determinant of the strain tensor (second invariant), and (f) the spectral norm of the strain 

tensor. These strain measures were derived from the average 2D Lagrange strain tensor in 

each spatial bin at peak indentation during impact. Scale bar indicates 200 µm.  
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3.7.2 Correlations between cellular dysfunction and strain over time 

 

Figure 3.7. Correlations between fractional depolarization and strain are weaker after 

treatment but are consistent over time. Each plot shows the correlation coefficient between 

the average fraction of depolarized cells in each spatial bin over time and a corresponding 

strain measure, including: (a) Exx, the axial strain in the lateral direction, (b) Exy, the shear 

strain, (c) Eyy, the axial strain in the depth direction (parallel to the impact), (d) the trace 

of the strain tensor (first invariant), (e) the determinant of the strain tensor (second 

invariant), and (f) the spectral norm of the strain tensor. These strains were calculated from 

the average 2D Lagrange strain tensor in each spatial bin at peak indentation during impact 

and were correlated with the average fraction of depolarized cells in that same spatial bin. 

In general, the correlation is consistent over time and treatment reduces the correlation (R 

closer to zero). Additionally, the correlation is strongest for the strain norm, representing 

the overall magnitude of strain. 
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3.7.3 Validation of experimental method and mitochondrial polarity assay 

 

Figure 3.8. Validation of experimental method and mitochondrial polarity assay. 

(a) Repeating the experimental method with no treatment and no impact on either hemi-

cylinder showed low, but non-zero mitochondrial dysfunction over time, reflecting 

systematic effects inherent to the method. The mitochondrial polarity imaging assay was 

validated by repeating the experiment (no impact and no treatment) with the addition of 

either FCCP or oligomycin at time zero. (a) As expected, nearly all observed chondrocytes 

showed depolarization when exposed to FCCP, while chondrocytes exposed to oligomycin 

retained full mitochondria polarity, paralleling the results in for the no-impact group. (b) In 

all cases, there was negligible cell death, as expected. 

3.7.4 Statistical models 

Various linear mixed-effects models were fit to the data to test for significant trends and difference 

between testing conditions. In all cases, models were fit and reduced in MATLAB using fitlme 

and further statistical contrasts and associated p-values were computed using the method 

coefTest. All models included a random effect of source animal on the intercept. Residuals were 

checked for normality and homogeneity and response variables were transformed to ensure normal 

residuals. Sample treatment condition and impact condition were encoded as binary variables. 
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Time was also treated as a categorical variable, including time points #2-9, corresponding to 0 

through 60 minutes after impact. The time point collected before impact was excluded because all 

tracked cells were alive and functional at that time, by definition. The details of each model are 

specified below. 

3.7.4.1 Mixed-effects model of mitochondrial dysfunction over time, impact, and treatment  

A mixed-effects linear model was fit to test for significant differences in fractional mitochondrial 

dysfunction over time, impact condition, and treatment condition, as shown in Figure 3.3a. This 

mixed-effects model is detailed in Table 3.1 and was fit by the equation: 

(𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑑𝑒𝑝𝑜𝑙𝑎𝑟𝑖𝑧𝑒𝑑)
1
5

= 1 + 𝑡𝑟𝑒𝑎𝑡𝑒𝑑 × 𝑖𝑚𝑝𝑎𝑐𝑡𝑒𝑑 + 𝑡𝑟𝑒𝑎𝑡𝑒𝑑 × 𝑡𝑖𝑚𝑒 + 𝑖𝑚𝑝𝑎𝑐𝑡𝑒𝑑 × 𝑡𝑖𝑚𝑒 + 𝑡𝑟𝑒𝑎𝑡𝑒𝑑

× 𝑖𝑚𝑝𝑎𝑐𝑡𝑒𝑑 × 𝑡𝑖𝑚𝑒 + (1|𝑎𝑛𝑖𝑚𝑎𝑙) 



72 

Coefficient name 
Coefficient 

estimate 

Standard 
Error 

t 
Statistic 

DOF p Value 
95% CI 
Lower 

95% CI 
Upper 

(Intercept) 0.022 0.051 0.4 4632 6.7E-01 -0.078 0.122 

'treated' -0.061 0.077 -0.8 4632 4.2E-01 -0.212 0.089 

'impacted' 0.635 0.023 27.9 4632 4.9E-158 0.591 0.680 

'time_3' 0.016 0.021 0.8 4632 4.5E-01 -0.026 0.058 

'time_4' 0.023 0.021 1.1 4632 2.8E-01 -0.019 0.065 

'time_5' 0.103 0.021 4.8 4632 1.5E-06 0.061 0.144 

'time_6' 0.129 0.021 6.1 4632 1.5E-09 0.087 0.171 

'time_7' 0.141 0.021 6.6 4632 3.5E-11 0.100 0.183 

'time_8' 0.226 0.021 10.6 4632 5.8E-26 0.184 0.267 

'time_9' 0.500 0.021 23.5 4632 1.3E-115 0.459 0.542 

'treated:impacted' -0.457 0.034 -13.5 4632 1.1E-40 -0.524 -0.391 

'treated:time_3' -0.016 0.033 -0.5 4632 6.2E-01 -0.080 0.048 

'treated:time_4' -0.023 0.033 -0.7 4632 4.8E-01 -0.087 0.041 

'treated:time_5' -0.103 0.033 -3.2 4632 1.6E-03 -0.166 -0.039 

'treated:time_6' -0.129 0.033 -4.0 4632 7.6E-05 -0.193 -0.065 

'treated:time_7' -0.097 0.033 -3.0 4632 2.8E-03 -0.161 -0.034 

'treated:time_8' 0.031 0.033 1.0 4632 3.4E-01 -0.033 0.095 

'treated:time_9' -0.022 0.033 -0.7 4632 4.9E-01 -0.086 0.042 

'impacted:time_3' 0.046 0.032 1.4 4632 1.5E-01 -0.017 0.109 

'impacted:time_4' 0.055 0.032 1.7 4632 8.9E-02 -0.008 0.118 

'impacted:time_5' 0.010 0.032 0.3 4632 7.6E-01 -0.053 0.073 

'impacted:time_6' -0.025 0.032 -0.8 4632 4.3E-01 -0.088 0.038 

'impacted:time_7' -0.034 0.032 -1.1 4632 2.9E-01 -0.098 0.029 

'impacted:time_8' -0.089 0.032 -2.8 4632 5.6E-03 -0.152 -0.026 

'impacted:time_9' -0.324 0.032 -10.1 4632 1.5E-23 -0.387 -0.261 

'treated:impacted:time_3' 0.089 0.048 1.9 4632 6.4E-02 -0.005 0.183 

'treated:impacted:time_4' 0.110 0.048 2.3 4632 2.1E-02 0.017 0.204 

'treated:impacted:time_5' 0.172 0.048 3.6 4632 3.2E-04 0.078 0.266 

'treated:impacted:time_6' 0.217 0.048 4.5 4632 5.8E-06 0.123 0.311 

'treated:impacted:time_7' 0.199 0.048 4.2 4632 3.2E-05 0.105 0.293 

'treated:impacted:time_8' 0.150 0.048 3.1 4632 1.7E-03 0.056 0.244 

'treated:impacted:time_9' 0.288 0.048 6.0 4632 1.9E-09 0.194 0.382 

Table 3.1. Mixed-effects model of the fractional depolarization over time, impact 

condition, and treatment condition. Each row corresponds to one coefficient in the full 

model. This model was fit to the data shown in Figure 3.3a and used compute associated 

statistical comparisons. 
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3.7.4.2 Mixed-effects model of cell death over time, impact, and treatment  

A mixed-effects linear model was fit to test for significant differences in fractional cell death over 

time, impact condition, and treatment condition, as shown in Figure 3.3b. This mixed-effects 

model is detailed in Table 3.2 and was fit by the equation: 

(𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑑𝑒𝑎𝑑)
1

10

= 1 + 𝑡𝑟𝑒𝑎𝑡𝑒𝑑 × 𝑖𝑚𝑝𝑎𝑐𝑡𝑒𝑑 + 𝑡𝑟𝑒𝑎𝑡𝑒𝑑 × 𝑡𝑖𝑚𝑒 + 𝑖𝑚𝑝𝑎𝑐𝑡𝑒𝑑 × 𝑡𝑖𝑚𝑒

+ (1|𝑎𝑛𝑖𝑚𝑎𝑙) 
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Coefficient name 
Coefficient 

estimate 

Standard 
Error 

t 
Statistic 

DOF p Value 
95% CI 
Lower 

95% CI 
Upper 

(Intercept) 0.079 0.048 1.7 4639 9.9E-02 -0.015 0.173 

'treated' -0.098 0.071 -1.4 4639 1.7E-01 -0.238 0.041 

'impacted' 0.095 0.020 4.9 4639 1.2E-06 0.057 0.133 

'time_3' -0.008 0.021 -0.4 4639 7.1E-01 -0.049 0.033 

'time_4' 0.001 0.021 0.0 4639 9.7E-01 -0.040 0.042 

'time_5' 0.059 0.021 2.8 4639 5.1E-03 0.018 0.100 

'time_6' 0.067 0.021 3.2 4639 1.4E-03 0.026 0.108 

'time_7' 0.067 0.021 3.2 4639 1.5E-03 0.026 0.108 
'time_8' 0.078 0.021 3.7 4639 1.9E-04 0.037 0.119 
'time_9' 0.067 0.021 3.2 4639 1.5E-03 0.026 0.108 
'treated:impacted' -0.082 0.013 -6.1 4639 1.4E-09 -0.108 -0.055 
'treated:time_3' 0.023 0.026 0.9 4639 3.9E-01 -0.029 0.074 
'treated:time_4' -0.001 0.026 0.0 4639 9.8E-01 -0.052 0.051 
'treated:time_5' -0.057 0.026 -2.2 4639 2.9E-02 -0.109 -0.006 
'treated:time_6' -0.070 0.026 -2.7 4639 7.9E-03 -0.121 -0.018 
'treated:time_7' -0.065 0.026 -2.5 4639 1.3E-02 -0.117 -0.014 
'treated:time_8' -0.023 0.026 -0.9 4639 3.9E-01 -0.074 0.029 
'treated:time_9' 0.005 0.026 0.2 4639 8.5E-01 -0.047 0.056 
'impacted:time_3' 0.121 0.026 4.6 4639 4.4E-06 0.069 0.172 
'impacted:time_4' 0.225 0.026 8.6 4639 1.2E-17 0.174 0.277 
'impacted:time_5' 0.238 0.026 9.1 4639 1.5E-19 0.187 0.290 
'impacted:time_6' 0.288 0.026 11.0 4639 1.0E-27 0.237 0.339 
'impacted:time_7' 0.295 0.026 11.2 4639 6.6E-29 0.243 0.346 
'impacted:time_8' 0.325 0.026 12.4 4639 1.0E-34 0.274 0.376 
'impacted:time_9' 0.334 0.026 12.7 4639 1.6E-36 0.283 0.385 

Table 3.2. Mixed-effects model of the fractional cell death over time, impact condition, 

and treatment condition. Each row corresponds to one coefficient in the full model. This 

model was fit to the data shown in Figure 3.3b and used compute associated statistical 

comparisons. 
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3.7.4.3 Mixed-effects model of mitochondrial dysfunction over time, impact strain norm, and 

treatment  

A mixed-effects linear model was fit to test for significant differences in fractional mitochondrial 

dysfunction over time, impact strain norm, and treatment condition, as shown in Figure 3.4. This 

model was fit using data from impacted samples only, because no-impact samples have zero strain, 

by definition, and thus the two variables are not independent. This mixed-effects model is detailed 

in Table 3.3 and was fit by the equation: 

(𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑑𝑒𝑝𝑜𝑙𝑎𝑟𝑖𝑧𝑒𝑑)
1
2 = 1 + 𝑡𝑖𝑚𝑒 + 𝑡𝑟𝑒𝑎𝑡𝑒𝑑 × 𝑠𝑡𝑟𝑎𝑖𝑛 + (1|𝑎𝑛𝑖𝑚𝑎𝑙) 

Coefficient name 
Coefficient 

estimate 

Standard 
Error 

t 
Statistic 

DOF p Value 
95% CI 
Lower 

95% CI 
Upper 

(Intercept) 0.036 0.048 0.7 5709 4.6E-01 -0.059 0.130 

'treated' -0.002 0.071 0.0 5709 9.8E-01 -0.142 0.138 

'strain' 2.440 0.061 39.9 5709 8.0E-308 2.321 2.560 

'time_3' 0.056 0.012 4.8 5709 1.3E-06 0.033 0.078 

'time_4' 0.071 0.012 6.1 5709 9.1E-10 0.048 0.093 

'time_5' 0.094 0.012 8.1 5709 4.5E-16 0.071 0.116 

'time_6' 0.100 0.012 8.7 5709 5.1E-18 0.077 0.123 

'time_7' 0.113 0.012 9.8 5709 1.9E-22 0.090 0.135 
'time_8' 0.195 0.012 17.0 5709 5.4E-63 0.173 0.218 
'time_9' 0.316 0.012 27.5 5709 6.3E-156 0.294 0.339 
'treated:strain’ -2.371 0.090 -26.2 5709 2.8E-143 -2.548 -2.194 

Table 3.3. Mixed-effects model of the fractional mitochondrial dysfunction over time, 

impact strain norm, and treatment condition. Each row corresponds to one coefficient in 

the full model. This model was fit to the data shown in Figure 3.4 and used compute 

associated statistical comparisons. 
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CHAPTER 4. LOCAL AND GLOBAL MEASUREMENTS SHOW THAT 

DAMAGE INITIATION IN ARTICULAR CARTILAGE IS INHIBITED BY 

THE SURFACE LAYER AND HAS SIGNIFICANT RATE DEPENDENCE 

Bartell, L. R., Xu, M. C., Bonassar, L. J., Cohen, I. Journal of Biomechanics 72, 63-70 (2018). 

4.1 Abstract 

Cracks in articular cartilage are a common sign of joint damage, but failure properties of cartilage 

are poorly understood, especially for damage initiation. Cartilage failure may be further 

complicated by rate-dependent and depth-dependent properties, including the compliant surface 

layer. Existing blunt impact methods do not resolve local cartilage inhomogeneities and traditional 

fracture mechanics tests induce crack blunting and may violate underlying assumptions of linear 

elasticity. To address this knowledge gap, we developed and applied a method to indent cartilage 

explants with a sharp blade and initiate damage across a range of loading rates (strain rates 0.5%/s 

to 500%/s), while recording local sample deformation and strain energy fields using confocal 

elastography. To investigate the importance of cartilage’s compliant surface, we repeated the 

experiment for samples with the surface removed. Bulk data suggest a critical force at which the 

tissue cuts, but local strains reveals that the deformation the sample can sustain before reaching 

this force is significantly higher in the surface layer. Bulk and local results also showed significant 

rate dependence, such that samples were easier to cut at faster speeds. This result highlights the 

importance of rate for understanding cracks in cartilage and parallels recent studies of rate-

dependent failure in hydrogels. Notably, local sample deformation fields were well fit by classical 

Hookean elasticity. Overall, this study illustrates how local and global measurements surrounding 
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the initiation of damage in articular cartilage can be combined to reveal the importance of 

cartilage’s zonal structure in protecting against failure across physiologically relevant loading 

rates. 

4.2 Introduction 

Cracks in articular cartilage are a common sign of joint damage. In clinical settings, fissures are 

often observed during arthroscopic inspection of an injured joint115,116.  Such injuries predispose 

patients to chronic joint damage and disease, including osteoarthritis3. In orthopedics, clinicians 

and researchers acknowledge the importance of cracks by including them in various arthroscopy 

and histopathology grading schemes117,118. Basic science and engineering studies have also 

associated cartilage cracks with increased cell death and matrix degradation2,119, suggesting they 

can disrupt the homeostasis that is essential for joint health. As such, cracks in cartilage have the 

potential to be an important early marker of cartilage damage and disease. However, beyond these 

basic observations, cartilage cracks are poorly understood and many questions must be answered 

before cracks can guide clinical decision-making. 

One complication for studying cracks in cartilage is that cartilage is highly anisotropic and 

heterogeneous, with mechanical properties and composition that vary with depth. The superficial 

100-300 µm of tissue, known as the surface layer, has lower compressive and shear moduli than 

the bulk49,102, which may be explained by variations in composition37.  Additionally, the collagen 

alignment varies with depth, where fibers near the surface are predominantly parallel to that 

surface with an additional in-plane alignment known as the split-line pattern22–24. Recent results 

have further demonstrated that the surface layer may serve a mechanically protective role26,84. 
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Beyond variations in composition and alignment, cartilage has a complex rate-dependence from 

both viscoelastic and poroelastic effects120. All of these factors may influence cartilage fracture 

and failure but are difficult to disentangle without studying cartilage at spatial resolutions of 

around ten microns.  

Experimentally, cartilage cracks are generally studied in two contexts: blunt overload or traditional 

fracture mechanics geometries, such as the notch test. In overload experiments, such as a drop-

tower test, a blunt object rapidly and forcefully impacts cartilage6,40,40,42,43,104. When this loading 

is faster than the poroelastic time scale, fluid is trapped and pressurizes, thus stressing the 

surrounding solid matrix, which ultimately ruptures121. This loading is analogous to physiologic 

injuries, but the geometry of the sample and loading both influence fluid pressurization and so the 

material properties are difficult to disentangle. Moreover, the exact location of crack initiation is 

unknown prior to loading, making it experimentally difficult to study local material behavior. In 

contrast, traditional fracture mechanics experiments apply standardized sample and loading 

geometries to articular cartilage that are designed to concentrate stress at a particular point, leading 

to material failure122–125. By linking a specific geometry to linear elasticity, such data can be used 

to calculate material properties, such as toughness, which describes the ability to absorb energy 

without cracking. In soft tissues, however, finite strains may violate the assumptions of linear 

elasticity and it is unclear to what degree this affects the understanding of cartilage failure. Studies 

applying the well-known notch test to cartilage show the tissue failing by crack-blunting and 

plastic yielding rather than traditional brittle crack propagation, indicating that tissue 

microstructure inhibits the stress concentration necessary to propagate brittle-like cracks126,127. 

Additionally, such methods study steady-state crack growth, rather than damage initiation, though 
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the latter may be equally important physiologically. Thus, neither blunt overload nor traditional 

fracture tests are adequate to fully understand cracks in articular cartilage, especially damage 

initiation.  

To address this knowledge gap, this study aimed to develop an indentation-based method to study 

damage initiation in articular cartilage. By indenting samples with a sharp blade, we created a 

crack at a known location, in a well-defined geometry, and with more stress-concentration than 

notch tests 128. Moreover, because the crack location was known, we could utilize recently 

developed confocal elastography techniques to study both global and local material behavior and 

investigate the importance of material inhomogeneity and finite strains when interpreting damage 

initiation in cartilage. We further investigated how rate modulates the observed damage initiation 

by indenting over a wide range of loading rates. Combined, this method simultaneously observed 

the local, global and time-dependent processes that are potentially important to understanding 

damage initiation in articular cartilage.  

4.3 Methods 

4.3.1 Sample preparation 

Chondral explants were harvested from condyles of 13 neonatal calves (sex unknown; Gold Medal 

Packing, Oriskany, NY) (Figure 4.1A). Explants were immersed in PBS and stored at 4°C for up 

to 48 h. For testing, explants were trimmed to 3 mm deep and bisected perpendicular or parallel to 

the known split-line direction129, creating 125 hemi-cylindrical samples. In some samples, a sledge 

microtome was used to remove 500 µm from the articular surface, creating a surface-removed 
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group. Information about each sample was recorded, including source animal, condyle (medial or 

lateral), orientation (parallel or perpendicular to split-line), time between dissection and testing, 

and surface condition (intact or removed). 

 

Figure 4.1. Outline of experimental methods. (A) Cylindrical plugs were harvested from 

medial and lateral condyles, trimmed to 3 mm deep, with the surface either intact or 

removed, and then bisected to create hemi-cylindrical samples. (B) Samples were mounted 

to the fixed plate of the test frame, with the cartilage surface facing the blade. The test 

frame was mounted on a confocal microscope to image local sample deformation. (C) The 

blade was driven into the sample at a fixed speed to a maximum displacement of 500 µm 

while the bulk force response was recorded at the fixed plate using a force sensor. A 

characteristic force-depth curve is shown with the point of first-cut marked by the dashed 

red lines. (D) Example confocal images taken throughout the experiment. At the end, after 

the blade has retracted, arrows mark the extent of the remaining crack. Note there is no 

residual deformation, indicating elastic deformation, other than the newly-created crack 

surface.  
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4.3.2 Indentation device 

To test cartilage failure properties, a razor blade (#27-251, Razor Blade Company, Van Nuys, CA; 

~150 nm tip diameter, §4.7.1) was mounted to the piezoelectric-driven plate of a Tissue 

Deformation Imaging Stage (TDIS; Harrick Scientific, Ithaca, NY) and used to indent cartilage, 

thus creating cracks in a known location (Figure 4.1B,C). Samples were glued to the fixed plate of 

the TDIS, as described previously49. During indentation, force was measured using a 2 kg (19.6 N) 

load cell (S300, Strain Measurement Devices, Wallingford, CT) and blade displacement was 

recorded from the piezoelectric monitor. The blade was driven to 500 µm displacement and 

retracted at fixed speeds of 2.5 to 1000 µm/s. Each sample was immersed in PBS throughout 

testing and indented only once with a fresh blade.  

The TDIS was mounted onto an inverted confocal microscope (LSM 5 LIVE, Carl Zeiss Inc., 

Oberkochen, Germany), to observe local sample deformation. For imaging contrast, samples were 

stained for 50 minutes in 14 µM 5-DTAF49. Videos of deformation during indentation were 

recorded at 15 to 60 frames per second, depending on blade speed, with a 512 pixel (666 µm) field 

of view (Figure 4.1D). 

4.3.3 Data analysis 

For each experiment, force (F) verses blade depth (d) plots were characterized. Force was 

smoothed using a moving-average filter with a window size of 1 µm blade displacement (scaled 

in time based on the blade speed). The blade depth was calculated as the blade displacement minus 

the slight displacement of back plate resulting from the strain-based load cell. The critical force, 
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FC, and depth, dC, at first-cut were extracted, and the data were integrated up to this critical point 

to extract strain energy, WC. For these three responses (critical force, depth, and energy), mixed-

effects linear regression models were implemented to test which parameters significantly affected 

each response (§4.7.2). 

Confocal videos were processed to extract local deformation and energy fields. Videos were 

analyzed from zero blade depth to just beyond the point of first cut using Ncorr (2D image 

correlation; widow size 19.7 µm, grid spacing 3.9 µm, smoothing radius 27.5 um)105.  Images were 

generally well tracked, except the area closest to the blade tip. When the first cut in the bulk 

response did not agree with that observed in the confocal video, likely due to misalignment, 

samples were excluded from local deformation analysis.  

Deformation fields were used to compute local strain energy density. Strain energy was calculated 

by assuming a 2D neo-Hookean constitutive model with depth-dependent Lamé parameters taken 

from the literature102,129. Local deformations were compared to the 2D functional form predicted 

by contact mechanics. According to Johnson128, line loading of a Hookean elastic half-space yields 

the radial displacement field: 

 𝑢𝑟(𝑟, 𝜃) = −
(1−𝜐2)

𝜋𝐸
2𝑃 cos 𝜃 ln

𝑟

𝑟0
−

(1−2𝜐)(1+𝜐)

𝜋𝐸
𝑃𝜃 sin 𝜃 (4.1) 

where µr is the radial displacement, r is the radial distance from the applied load, θ is the 

circumferential direction (θ = 0 parallel to the applied load), ν and E are the Poisson’s ratio and 

Young’s modulus, P is the applied force per length, and r0 is a scaling constant. Thus, 2D 

displacement data for each sample were fit to: 
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 𝑢𝑟(𝑟, 𝜃) = cos 𝜃 (−𝛽1 ln 𝑟 + 𝛽2) − 𝛽3𝜃 sin 𝜃 (4.2) 

 with 𝛽1 =
(1−𝜐2)

𝜋𝐸
2𝑃, 𝛽2 = 𝛽1 ln 𝑟0 + 𝛼, and 𝛽3 =

(1−2𝜐)(1+𝜐)

𝜋𝐸
𝑃, 

using a nonlinear least-squares approach with fitting coefficients βi. Note that β2 incorporates both 

the scaling term r0 and any overall sample displacement resulting back plate displacement, α.  

4.4 Results 

Bulk indentation force-depth data showed similar behavior across all samples, including a smooth 

rise up to the point of first cut, followed by a dramatic drop and then a sawtooth-like pattern as the 

blade continued to cut (Figure 4.2A). The critical force, depth, and energy at first-cut were 

extracted and fit to linear mixed-effects models (Figure 4.2B-D). All three outcomes depended 

significantly on indentation rate (p = 2.6×10−5, 5.5×10−21, and 6.1×10−16 for critical force, depth, 

and energy, respectively). Moreover, the critical depth and energy were significantly lower for 

surface-removed samples (p = 1.2×10−29 and 1.7×10−4, respectively). Notably, no other terms were 

significant in the models. 
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Figure 4.2. (A) Characteristic force vs. blade depth curves for one surface-intact and one 

surface-removed sample. Both samples were taken from the 10 µm/s blade speed group. 

For all samples, the force and depth at first cut (dC and FC, respectively) were extracted and 

the integration of force verses depth up to that point, a measure of strain energy (WC), was 

computed. (B-D) The force, depth, and energy at first cut for all experiments (circles or 

crosses), shown with the corresponding reduced linear model fits (solid lines), for surface-

intact (black) and surface-removed (blue) samples. For all three measures, the response 

was significantly dependent on blade speed (p-values: 2.6×10−5, 5.5×10−21, and 6.1×10−16, 

respectively). Additionally, surface-removed samples had a lower critical cut depth and 

energy, as compared to surface-intact (p-values: 1.2×10−29 and 1.7×10−4, respectively). See 

§4.7.2 for full statistical models. 

Normalizing each bulk force curve by the critical force and depth collapsed the data to reveal 

overall trends that varied with loading rate (Figure 4.3A). At slower blade speeds, surface-intact 

and -removed samples showed similar trends, including a slight “J”-shaped response. At higher 

blade speeds, the surface-removed samples showed a dramatic change in concavity, with a steep 
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initial rise in the force response. For each blade speed, the difference between surface-intact and -

removed trends was characterized by the root-mean-square (RMS) deviation between each pair of 

normalized force-depth curves (Figure 4.3B). This RMS deviation confirmed that intact and 

removed samples became increasingly distinct at faster indentation. 

 

Figure 4.3. (A) Force verses blade depth curves, up to the point of first-cut, normalized by 

the cut force and cut depth, and grouped by blade speed. Individual samples are shown in 

dotted lines and group averages +/- standard deviation are shown in solid lines. Surface-

intact samples (gray curves) show characteristic “J”-shaped response. In the 2.5 µm/s 

group, surface-removed samples follow a similar trend. However, at higher speeds the 

surface-intact and -removed groups become increasingly distinct and, instead of a toe-

region, surface-removed samples show a sharp initial rise. (B) A Tukey box plot of the 

RMS deviation between each pair of normalized force curves, as a function of blade speed. 

Groups that share a letter are not significantly different, confirming that the intact and 

removed samples become increasingly distinct (higher deviation) at faster speeds. 

In addition to the bulk response, confocal videos were analyzed to extract local deformation fields 

and calculate strain energy density. Samples showed high strain and strain energy near the tip, 



86 

though the shape and magnitude varied between groups. Figure 4.4 compares characteristic 

samples from the surface-intact and -removed groups at similar bulk force and again at similar 

blade depths. At first-cut, the strain was higher in magnitude and spread over a larger region of the 

surface-intact sample. The strain energy density fields looked more similar between the groups. 

Comparing the samples at matched-depth instead, the surface intact sample still showed more 

lateral spread of strain across the compliant articular surface (arrows), while the strain energy 

density field was much lower in magnitude.  
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Figure 4.4. Local deformation analysis for strain and strain energy density. Columns 1-2 

compare one surface-removed and one surface-intact sample at first cut, i.e. with similar 

bulk force. Alternatively, columns 2-3 compare the same two samples, but at similar blade 

depths (i.e. prior to the first cut for the surface-intact sample). Row 1 shows the raw 

confocal images, row 2 shows the resulting Lagarange strain norm, and row 3 shows the 

corresponding strain energy density. Note that both strain and strain energy are in deformed 

coordinates. In the force-controlled comparison, strain fields are distinct between surface-

intact and -removed, but the strain energy fields are more similar. The opposite is true 

(similar strain but distinct strain energy) for the depth-controlled comparison. Arrows 

highlight differences in how the strain field spreads across the surface layer. 

To characterize overall trends, strain energy density fields were grouped by surface condition and 

indentation rate and averaged (Figure 4.5A). The 2.5 and 1000 µm/s groups only had one sample 
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each and thus were excluded. Two trends were apparent from these plots. First, the magnitude of 

the strain energy decreased with increasing blade speed, in agreement with the bulk results (Figure 

4.2D). Second, strain energy fields in surface-intact samples were more oblong, extending farther 

both along the surface and deeper into the tissue, while surface-removed fields were more radially 

symmetric (§4.7.3). Figure 4.5B shows the average change in strain energy density before and 

after first cut, when the blade had moved 20 µm further. These ΔW fields highlight where strain 

energy was lost to create the resulting initial cut (ΔW<0), and where additional strain energy was 

gained as the blade advanced (ΔW>0). These ΔW fields decreased in spatial extent with increasing 

rate. 
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Figure 4.5. (A) Average strain energy density fields at first cut, grouped by surface 

condition (columns) and blade speed (rows), in undeformed coordinates, where the top-

center of each frame corresponds to the point of blade indentation. In general, the surface-

intact strain energy field is more oblong, extending deeper into the sample and laterally 

along the surface, while the surface-intact strain energy field is more radially symmetric 

about the point of indentation. In both surface-intact and surface-removed groups, the strain 

energy density decreases as blade speed increases, in agreement with the bulk results. (B) 

Similar plots of the average change in strain energy density from just before the point of 

first cut to a few frames after, when the blade has moved 20 µm further. Note that some 

areas of the field have decreased strain energy (i.e. negative ΔW) while others have 

increased (i.e. positive ΔW). As in the strain energy fields shown in (A), the overall extent 

of ΔW fields also decreases with increased blade speed. Numbers (N) at the bottom of each 

frame indicate the number of samples averaged to produce the given field. The scale bar 

applies to all frames. 

Displacement fields were fit to the form predicted by contact mechanics. Figure 4.6 shows cuts of 

the raw data and associated 2D fits to Equation 4.2 for constant θ and varying r (A,D) and for 

constant r and varying θ (B,E). For all samples, βi coefficients fell in the in the expected range, 

given values of ν and E taken from the literature and FC taken from this study (§4.7.4). Despite 

assumptions of small-strain Hookean elasticity and infinite boundaries, these fits recapitulated the 

overall trends with coefficients of determination greater than 0.9 in all cases (R2, Figure 4.6C,F). 

In fact, the surface-intact samples tended to have lower R2, since the data deviated more from the 

fit at smaller values of r and was more sharply peaked in θ. This observation is not surprising, 
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considering that the model assumes homogeneous material properties and the surface-intact 

samples have a mechanically-distinct surface layer.  

 

Figure 4.6. Cuts of the 2D displacement data and associated 2D fits to the functional form 

predicted by contact mechanics (Equation 4.2). Data and fits are shown for (A-C) surface-

intact samples and (D-F) surface-removed samples, with cuts taken (A,D) at θ = 0° and 

(B,E) at r = 300 µm. Color reflects blade speed. (C,F) Associated histograms of the 

goodness of fit (coefficient of determination) for each fit. In general, this equation fits the 

data well (R2>0.9), though there are larger deviations at small values of r and, for surface-

intact samples, the data’s trend with θ is more sharply peaked. See §4.7.4 for data and fits 

normalized by the fitting parameters. 
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4.5 Discussion 

Our blade indentation experiments with confocal elastography revealed strong rate dependence in 

both bulk and local results, such that samples were easier to cut at faster speeds. As rate increased, 

the first-cut occurred at lower force, lower blade depth, lower energy, more localized strain field, 

and smaller radial displacement (Figure 4.2, Figure 4.5, Figure 4.6). Moreover, in surface-removed 

samples, normalized bulk force trends with depth switched from a strain-stiffening to a strain-

weakening behavior with increasing indentation speed (Figure 4.3). This rate dependence may be 

explained by the depth-varying poroelastic and viscoelastic time scales inherent to articular 

cartilage. Here, the relevant characteristic length scale determining the rate of fluid flow in the 

tissue may vary from the radius of the blade tip (≈150 nm) to the decay length of the strain field 

(≈500 µm). These length scales result in characteristic poroelastic time scales of 0.1 ms to 40 s, 

spanning the range from faster to slower than the indentation rate. Thus, at slower rates, fluid 

pressurization and flow are unlikely to be a dominant factor but may come into play at faster rates. 

The viscoelasticity of cartilage may introduce another time scale. Using data from Hayes and 

Bodine19, the viscosity of the solid matrix at 20 Hz is about 23 kPa·s, which, dividing by the 

storage modulus, gives a time scale of about 15 ms. Thus, viscoelastic dissipation in the solid 

matrix is less likely to influence the results here, except at the faster indentation rates. Overall, the 

rate dependence studied here is physiologically relevant, ranging from nearly static (≈0.5%/s) to 

injurious (≈500%/s) rates121,130 

In addition to this rate-dependence, both bulk and local responses varied between surface-intact 

and surface-removed sample groups. While the groups had similar critical bulk force, surface-

removed samples had significantly lower critical depth and energy (Figure 4.2). Locally, the strain 
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and strain energy fields spread across the compliant surface layer, but strain was more localized 

near the tip in surface-removed samples (Figure 4.4, Figure 4.5). Combined, these results suggest 

a critical force at which the tissue cuts, but the deformation the sample can sustain before reaching 

this force is significantly higher for the surface layer. In vivo, this behavior would allow the surface 

to better conform to local defects in the loading geometry before cracking. Combined with the fact 

that the surface is more dissipative than the bulk, these results reinforce the idea that the surface 

tissue may serve a mechanically protective role in the joint26,84.  

Separately, it is interesting to note that, other than indentation rate and surface condition, no 

variables significantly affected any of the responses measured in this study. The fact that neither 

orientation, nor its interaction with surface condition was significant implies that, while the 

compliant surface is mechanically important, the orientation of the thin zone of highly aligned 

fibers at the articular surface did not have a large effect on any of the responses studied here. While 

these results are surprising, they may change with tissue maturity as the collagen alignment 

develops further131.  

The primary focus of this study was connecting the local and global trends up to and at first-cut, 

i.e. for damage initiation. In the literature, the propagation of existing cracks is also an important 

topic that, like damage initiation, is understudied in the context of articular cartilage. The existing 

studies often computed toughness during crack propagation as characterized by the strain energy 

release rate (energy released per crack area), yielding values ranging from 140 J/m2 to over 

1000 J/m2 123,125,127,132. To compare our results to these studies, we extracted a similar estimate of 

toughness from the bulk force-displacement data which averaged to 32.3 J/m2 for surface-intact 
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samples and 68.0 J/m2 for surface-removed samples (§4.7.5). While this measure excludes the 

superficial-most tissue (≈50 µm) and is lower than the other literature values, it suggests that 

toughness increases with depth into the tissue. It is especially interesting to note that our measure 

of toughness is closest to that measured by Chin-Purcell and Lewis for their cartilage samples that 

displayed the most brittle-like response123, similar to the cracking observed in the present study. 

This comparison highlights that, although the loading geometry used here does not mimic that 

experienced physiologically, it carries some advantages of traditional fracture mechanics 

approaches, including localized stress concentration in a standardized geometry that encourages 

brittle-like fracture modes over a wide-range of physiologically relevant loading rates.  

In the broader field of material damage and failure, the effects of both inhomogeneous material 

properties and time-dependent processes are active areas of research, especially for soft materials, 

such as hydrogels. In layered systems, cracks have been observed to propagate toward and then 

along interfaces133,134, which is not unlike the crack deflection often observed in articular 

cartilage40,135,136, and may be related to the difference between surface-intact and -removed groups 

observed here. In hydrogels, both viscoelasticity and poroelasticity are known to modify the 

material failure and damage in complex ways137,138. Indentation and compression based 

experiments, similar to the method used here, have recently shown promise for studying this time-

dependent behavior in hydrogels138. Another interesting parallel is with recently-developed 

double-network hydrogels which, with a combination of elastic and ductile (i.e. dissipative) 

networks, can have extremely high toughness139,140. Cartilage, one of the toughest, soft bio-

materials, may also be considered a double-network (elastic collagen, dissipative proteoglycan 

networks) and so this interpretation may be relevant for cartilage failure. Beyond hydrogels, a 
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similar “stick-slip” sawtooth region was observed when performing displacement-controlled blade 

indentation on rubbers141. This comparison suggests that, after first cut, friction may also play a 

role in our study. In the future, it would be interesting to explore the above parallels in more detail, 

since each has important implications for both the likelihood of native cartilage failing during 

normal or super-physiological use, as well as designing engineered tissues that can withstand the 

complex, dynamic loading environment in a joint.  

Though useful for resolving the importance of rate and local material behavior in initiating 

cartilage damage, this study is not without limitations. In particular, neonatal bovine articular 

cartilage explants were used. Neonatal tissue is known to have an under-developed collagen 

alignment22, and so the response of mature tissue may be further modulated by its stronger collagen 

alignment131. The tissue toughness may also increase as collagen density and cross-linking 

increase with maturity142. Nonetheless, the shear properties of immature and mature tissues are 

similar49 and immature tissue provides a framework for studying injury66,67. Another limitation is 

the use of a neo-Hookean constitutive model to calculate strain energy fields. This model does not 

perfectly capture cartilage’s response143, and parameters were taken from the literature instead of 

sample-specific measurements. Nonetheless, the neo-Hookean model performs adequately when 

compared to others143, and is designed for situations with large deformations, such as those 

observed in this study144.  

The combination of bulk and local measurements surrounding cartilage damage and cracking 

demonstrated in this study provides a fruitful ground for bridging the gap between traditional 

fracture mechanics, local damage theories, and clinically-relevant articular cartilage failure. In 
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future work, it would be interesting to develop this method further, building theoretical 

underpinnings to extracting relevant material damage and failure properties as a function of 

location in the tissue. Also, as confirmed in this study, loading rate is central to understanding 

articular cartilage both ex vivo and in vivo, including its failure. To that end, future work with this 

method can address this rate dependence in more detail, including its link to cutting-edge research 

regarding the effects of poroelasticity, viscoelasticity, and secondary-networks on the strength and 

failure of hydrogel-like materials. Overall, this study illustrates how combining local and global 

measurements surrounding the initiation of damage in articular cartilage can be used to reveal the 

importance of cartilage’s known layered structure in protecting against failure across 

physiologically relevant loading rates. 
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4.7 Supplemental information 

4.7.1 Blade geometry 

The sharpness of razor blades used in this study (#27-251, Razor Blade Company, Van Nuys, CA) 

was characterized by imaging the tip of a fresh, untouched blade using a SEM (Zeiss LEO 1550 

FESEM, Oberkochen, Germany). As shown in Figure 4.7, the radius at the tip of these uncoated 

blades is approximately 75 nm and the apex angle at the tip is 29° ± 1°, as measured using ImageJ. 

 

Figure 4.7. A SEM image showing the tip of a fresh razor blade. The radius of the tip is 

approximately 75 nm. 

4.7.2 Mixed-effect linear models of bulk responses 

Critical bulk force, blade depth and integrated energy at the point of first fracture were fit to mixed-

effects linear regression models in order to test for significant effects. Each of these three responses 

was fit to a linear model which included all individual and interaction terms for the available 

variables: sample orientation (parallel or perpendicular to the split-line), surface condition (intact 
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or removed), storage time between dissection and testing, source condyle (medial or lateral), and 

the natural log of the blade speed. A random effect was added to account for samples that 

originated from different animals. These models were implemented in MATLAB (The MathWorks 

Inc, Natick, MA) using the fitlme function. Each full model was reduced by iteratively removing 

insignificant highest-order terms (p > 0.01) and fitting again, using the Satterthwaite 

approximation for computing degrees of freedom. The residuals of each model were also checked 

for normality and homogeneity. 

Response = A +  

B × ln(blade speed) 

Parameter A Parameter B Goodness of fit 

Parameter value p-value Parameter value p-value Adjusted R2 

Intact Removed Intact vs. Removed Intact or Removed Value vs. zero  

Cut force (N) 0.484 0.462 0.96 −0.0242 2.6×10−5 0.12 

Cut depth (µm) 293 162 1.2×10−29 −24.5 5.5×10−21 0.72 

Cut energy (µJ) 42.3 34.2 1.7×10−4 −4.87 6.1×10−16 0.42 

Table 4.1. Coefficients, significance values, and goodness of fit values for the reduced 

mixed-effects linear models of critical bulk force, depth, and energy at first cut, and the 

toughness (throughout cutting) as shown in Figure 4.2B-D. In all cases, the full model was 

reduced by removing insignificant higher-order fixed effects (p > 0.01), resulting in the 

final two-parameter model shown here. 

4.7.3 Strain energy density spatial extent 

The spatial extent of individual strain energy fields in undeformed coordinates was characterized 

by taking the lateral- and depth-variance of data points above a strain-energy threshold of 

20 KJ/m3. Each variance was then fit to a reduced, fixed-effects linear model to test for significant 

effects. Each linear model included all individual and interaction terms for the available variables: 

sample orientation (parallel or perpendicular to the split-line), surface condition (intact or 
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removed), storage time between dissection and testing, source condyle (medial or lateral), and the 

natural log of the blade speed. These models were implemented in MATLAB using the fitlm 

function. Each full model was reduced by iteratively removing insignificant highest-order terms 

(p > 0.01) and fitting again, using the Satterthwaite approximation for computing degrees of 

freedom. The residuals of each model were also checked for normality and homogeneity. 

 

Figure 4.8. Analysis of the spatial extent of the strain energy density field in the lateral and 

depth dimensions. (A) Example strain energy density field showing the points above the 

threshold value of 20 KJ/m3. Points above this threshold were analyzed to calculate the 

variance in the (B) depth and (C) lateral directions for surface-intact samples (black circles) 

and surface-removed samples (blue circles). This data was fit to a fixed-effects model 

based on the log of the blade speed and the surface condition and these fits are shown as 

solid lines. The fits are further detailed in Table 4.2. 

Response = A +  

B × ln(blade speed) 

Parameter A Parameter B Goodness of fit 

Parameter value p-value Parameter value p-value Adjusted R2 

Intact Removed Intact vs. Removed Intact or Removed Value vs. zero  

Depth extent (µm) 125 92.4 3.3 E -7 -15.1 3.0 E -17 0.69 

Lateral extent (µm) 141 120 1.4 E -3 -17.0 1.7 E -17 0.68 

Table 4.2. Coefficients, significance values, and goodness of fit values for the linear fixed-

effects models of the lateral and depth extent of the strain energy fields, as shown in Figure 

4.8B-C. 
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4.7.4 Radial displacement fields fits 

In order to compare observed sample deformation with that predicted by contact mechanics, local 

2D displacement data was fit to the 2D functional form predicted by contact mechanics128. 

Although this theory assumes infinitely-sharp indentation of a Hookean elastic half space under 

small strain conditions, Equation 4.2 fit the data reasonably well, as shown in Figure 4.6. To 

highlight the logarithmic scaling, data and fits were scaled by the fitting parameters, βi, and these 

1D cuts of the normalized 2D data and fits are shown on a linear-log plot in Figure 4.9.  

 

Figure 4.9. Cuts of the 2D displacement data and associated 2D fits to the functional form 

predicted by contact mechanics. Data and fits are shown for (A) surface-intact and (B) 

surface-removed samples, with cuts take at θ = 0°. The data and fits were scaled based on 

the fitting parameters and are shown on a linear-log plot to emphasize the collapse and 

logarithmic scaling of the data. Note, this is the same data as shown in Figure 4.6, but 

scaled. 

It is also interesting to inspect the values of the fitting coefficients obtained from these fits (βi in 

Equation 4.2). Although β2 is difficult to interpret due to the unknown influence of the scaling 



101 

constant (R), fitted values for β1 and β3 can be directly calculated by assuming reasonable values 

of the Poisson’s radio, ν, and Young’s modulus, E, taken from the literature, and values of P = 

FC/(3 mm) from this study. Assuming ν ≈ 0.0 to 0.5, E ≈ 1 to 50 MPa, and FC ≈ 0.5 to 0.9 N, we 

expect β1 ≈ 1 to 200 µm and β3 ≈ 0 to 100 µm. The actual coefficients for β1 and β3 did agree with 

the expected values. The coefficient values are summarized in Table 4.3 and Figure 4.10. Note 

that, on average, values for β1 and β3 were higher for surface-intact samples, which is expected 

since the modulus of the surface layer is smaller and β1 and β3 are both inversely proportional to 

E. 

 Surface intact Surface removed 

 β1 β2 β3 β1 β2 β3 

Mean (µm) 42.3 330 20.0 16.7 164 5.27 

Standard error (µm) 4.9 33 1.8 2.9 19 1.1 

Table 4.3. Fit coefficients for surface-intact and surface-removed samples obtained by 

fitting local displacement data to Equation 4.2 in a 2D, least-squares sense. For each 

coefficient, the average value and the standard error of the mean are shown. 

 

Figure 4.10. Histograms of the fit coefficients (A) β1 and (B) β3 obtained by fitting local 

displacement data to Equation 4.2. Note that, the values lie in the expected range of values 

and values for surface-intact samples are generally higher than surface-removed. 
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4.7.5 Toughness calculation 

In the current study, the primary focus was on damage initiation in articular cartilage. However, 

the propagation of existing cracks is also an important and understudied issue relevant to articular 

cartilage. A handful of studies have applied traditional and more novel fracture tests to characterize 

the toughness of articular cartilage and other soft biomaterials123,125,127,132. When characterizing 

this crack propagation, many studies extract a measure of the toughness material property, or the 

ability of the material to resist cracking, based on the strain energy release rate (i.e. energy released 

per crack area). These existing studies observed toughness values from 140 J/m2 to over 1000 J/m2 

for articular cartilage. Although not the main focus of the present study, the bulk data after the 

first-cut provides a window to explore crack propagation in our system.  

To estimate a measure of toughness from the present study, we analyzed the bulk force-

displacement data after the first-cut, i.e. during the sawtooth-region. In particular, we anticipate 

that a taller and wider sawtooth implies a tougher material, since the energy build-up and loss 

during this time should reflect the strain energy released to create the new crack surface. To isolate 

these regions of strain build-up, the derivative of the force was thresholded to determine points 

during energy build-up (i.e. with positive slope) and only these areas were integrated, as depicted 

in Figure 4.11A. This energy was then divided by the final crack area, as determined by confocal 

images taken after each experiment (depth- and surface-profiles). This toughness measure was fit 

to a reduced mixed-effects linear model to determine significant effects with a random effect for 

animal, following the same procedure for linear models of the cut force, depth, and energy (as 

described in §4.3.3 and shown in Figure 4.2B-D). Note that this measure of toughness effectively 

excludes the first-cut. Based on the confocal videos, we estimate this first cut to be about 10 – 



103 

50 µm deep in undeformed coordinates. Instead, this measure of toughness applies to the tissue 

depth from after this first cut through the final cut depth, which is usually many-hundred microns. 

As such, the toughness comparison measure does not apply to the most superficial ~50 µm and is 

also likely a slight underestimation of the full value. 

The results of this toughness measure are shown in Figure 4.11B as a function of surface condition 

and blade speed. As with the other bulk results (Figure 4.2B-D, Table 4.1), these were the only 

two significant factors in the linear model (Table 4.4). Averaged across blade speed, the toughness 

was 32.3 J/m2 for surface-intact samples and 68.0 J/m2 for surface-removed samples.  

These results suggest that (after the first 20-50 µm) toughness increases with depth into the tissue. 

As mentioned previously in §4.5, it is especially interesting to note that our measure of toughness 

is closest to that measured by Chin-Purcell and Lewis123. This study measured a toughness of 

140 J/m2 for their most brittle-like samples and this brittle-like fracture is most comparable to the 

experimental system used in this study. However, in both surface-intact and surface-removed 

samples, our measure of toughness is lower than those reported elsewhere in the literature, which 

may reflect limitations of the current calculation. This measure of toughness also has a slight 

dependence on blade speed. Since toughness is a material property, this rate dependence is non-

ideal and may reflect time-dependent strain relaxation and energy dissipation in the tissue that is 

not appropriately incorporated into the current calculation. 
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Figure 4.11. (A) Characteristic force vs. blade displacement curves for one surface-intact 

and one surface-removed sample, up to the blade turn-around point. Both samples were 

taken from the 10 µm/s blade speed group and are the same samples shown in Figure 4.2A. 

For all samples, the energy expended during the full cutting time was integrated, as 

depicted by red areas. This energy was divided by the final cut area as a measure of 

toughness. (B) The toughness for all experiments (circles or crosses), shown with the 

corresponding reduced linear model fits (solid lines), for surface-intact (black) and surface-

removed (blue) samples. This measure of toughness was significantly dependent on blade 

speed (p-value: 3.1×10−5) and surface condition, with surface-removed having a higher 

toughness (p-value: 6.4×10−25). 

Response = A +  

B × ln(blade speed) 

Parameter A Parameter B Goodness of fit 

Parameter value p-value Parameter value p-value Adjusted R2 

Intact Removed Intact vs. Removed Intact or Removed Value vs. zero  

Toughness (J/m2) 54.9 17.6 6.4×10−25 3.71 3.1×10−5 0.64 

Table 4.4. Coefficients, significance values, and goodness of fit values for the linear mixed-

effects models of toughness as shown in Figure 4.11. In all cases, the full model originally 

included random effects for source animal and fixed effects for log of the blade speed, 

surface condition, storage time before testing, orientation in the joint, and condyle, with all 

interaction terms. The model was then reduced by removing insignificant higher-order 

fixed effects (p > 0.01), resulting in the final two-parameter model shown here. 
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CHAPTER 5. 3D MICROSCALE FLOW OF POLYMER COATINGS ON 

GLASS DURING INDENTATION 

Bartell, L. R., Lin, N. Y. C., Lyon, J. L., Sorensen, M. L., Clark, D. A., Lockhart, M. J., Matthews, 

J. R., Glaesemann, G. S., DeRosa, M. E., Cohen, I. MRS Communications 7, 896–903 (2017). 

5.1 Abstract 

We present an indentation-scope that interfaces with confocal microscopy, enabling direct 

observation of the 3D microstructural response of coatings on substrates. Using this method, we 

compared microns-thick polymer coatings on glass with and without silica nanoparticle filler. Bulk 

force data confirmed the >30% modulus difference, while microstructural data further revealed 

slip at the glass-coating interface. Filled coatings slipped more and about two times faster, as 

reflected in 3D displacement and von Mises strain fields. Overall, these data indicate silica-doping 

of coatings can dramatically alter adhesion. Moreover, this method compliments existing 

theoretical and modeling approaches for studying indentation in layered systems. 

5.2 Introduction 

Protective coatings are widely used and studied across science, technology, and engineering. For 

example, coatings enhance the chemical stability of organic materials and semiconducting 

photoelectrodes7,8, protect metals from corrosion9, and inhibit mechanical damage in glasses10. 

Organic polymeric coatings are commonly employed due to their high processability and photo-

curability. For many years, these polymeric materials have been further enhanced by the addition 
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of a second material phase. In particular, many recent studies focus on small, rigid inorganic 

additives, such as glass or ceramic nanoparticles. Such nanoparticle additives are useful because 

they increase the coating toughness without substantially decreasing the modulus, increasing the 

viscosity, or changing the glass transition temperature145–148.  

Indentation testing is a common and versatile technique for understanding material behavior, 

including in coated systems. For example, indentation tests are used to measure coating 

hardness149, coating-substrate adhesion150, fracture properties of the coating and substrate10,151, and 

coating and substrate moduli152–154. Such data are also utilized to compare various models of the 

substrate and coating material behavior11–15. Traditional methods include extracting bulk force-

displacement data during indentation with Vickers or ball-type tips154, with the possible addition 

of a video recording during indentation150,155 and surface analysis after tip retraction152. 

Instrumented nanoindentation, with the possible addition of concurrent 2D microscopy, is used to 

study thin-film coatings11,156,157. On a larger length scale, one study has used 3D confocal 

microscopy to extract the displacement of a ball indenting hydrogel, thus measuring the bulk 

hydrogel modulus153.  

Despite the real-world utility of coatings and the large variety of research on the indentation 

behavior of coated systems, few techniques enable researchers to directly observe the microscale 

material behavior under indentation, especially in a fully 3D context. This structural information 

is of great interest to a variety of fields and, if available, would enable researchers to address a 

diverse array of questions about the microscale response of polymeric coatings, the effect of 

nanoparticle fillers, and how such coating-substrate systems ultimately fail. 
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To address this knowledge-gap and better understand coating-substrate systems, we developed an 

indentation-scope that interfaces with fast confocal microscopy to directly measure both bulk and 

3D microscale responses of a coated glass system during the entire indentation process. In 

particular, we applied this technique to study the behavior of a microns-thick UV curable epoxy-

based coating on glass and compared plain coatings (unfilled) to those with silica nanoparticle 

filler. We observed coating pile-up around the tip in all samples and our results confirm a slightly 

higher force response in filled coatings, reflecting their ~50% larger modulus. We also observed 

slip at the coating-glass interface in all samples. Interestingly, the area of slip was not only larger 

in filled coatings, but developed at a faster rate with indenter displacement, potentially implying a 

different mechanism of slip growth. 

5.3 Methods 

5.3.1 Instrument 

To observe the structural response of coatings during indentation, we designed a custom 

indentation-scope that interfaces with a confocal microscope. The schematic of our setup geometry 

is shown in Figure 5.1a. The sample (coating on glass coverslip) was clamped between two annular 

sample holders and attached to a three-axis piezoelectric motor with a travel range of 300 µm and 

accuracy of ± 2 nm in the z direction (not depicted; P-563.3CD, Physik Instrumente, Karlsruhe, 

Germany). The diamond tip (4-sided pyramid indenter, 120° between faces; Gilmore Diamond, 

Attleboro, MA) was fixed to a load cell, which was mounted on the indentation apparatus. The 

load cell had a force measurement range of 44.5 N (10 lb) and was connected to a strain gauge 

amplifier (LSB200 and CSG110, Futek, Irvine, CA), digitized at 100 points per second using a 
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USB DAQ (12 bits analog input resolution; USB-6000, National Instruments, Austin, TX). With 

2 mV/V gain and 10 V excitation, this setup can resolve forces to ± 2 mN. During indentation tests, 

the load cell and diamond tip remained stationary while the piezo motor moved the sample upward 

toward the tip. Because the load cell was stationary, the force measurement was not subject to 

inertial effects. The sample was moved toward the tip at 0.15 µm/s, producing quasi-static 

measurements. Force output is shown in Figure 5.1b. This indentation apparatus was based on a 

previously-developed multiaxial confocal-rheoscope158. 
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Figure 5.1. Schematic of experimental setup and results. (a) Diagram of confocal 

indentation-scope where the sample holder is connected to a piezoelectric motor (not 

shown) and drives the coated glass sample up into the diamond indenter. During the 

experiment bulk force data was collected from the load cell and local sample deformation 

is observed from below using an inverted confocal microscope. (b) Force plotted against 

tip height (tip-to-glass distance, h) for each experiment (dashed lines) and the group 

average (solid lines) for plain and filled coatings. The tip hits the glass-coating interface at 

height h = 0 µm. Above 20 µm, the tip is above the coating and below 0 µm the tip is in 

the glass. Brackets above the plot area indicate the three stages of indentation used for 

comparing the coatings’ flows. (c) Representative yz projection of the 3D confocal data 

showing the system (c) before and (d) during indentation. 

To image the 3D microstructure of the coating, the indentation apparatus interfaced with a high-

speed, line-scanning confocal microscope (LSM 5 Live, Carl Zeiss Microscopy LLC, Jena, 

Germany), with a 100× objective (Zeiss Plan-aprochromat 100× 1.4 NA oil DIC objective, 340 µm 

total working distance) that was mounted on a high-speed piezo focusing motor for rapid z-

actuation (P-725.2CD PIFOC, Physik Instrumente, Karlsruhe, Germany). The entire field of view 
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(128 µm × 128 µm × 90 µm; 512 pixels × 512 pixels × 400 pixels) was collected in ≈ 6.7 s. Full, 

3D image stacks were collected throughout the experimental time at a rate of 1 stack per 11.84 s, 

for a total experimental time of about 950 s. Example xz confocal slices are shown in Figure 5.1c. 

The microscope imaged through the glass substrate to capture the coating and diamond tip above 

it. Thus, a thin, coverslip-thickness glass was used as the substrate (200 µm-thick Corning® 

Willow® glass, Corning Incorporated, Corning, NY). We used finite element analysis to estimate 

the deformation of the glass substrate during indentation and found the maximum strain to be 

≈ 1%, significantly less than the strain within the coating. 

5.3.2 Materials 

In this experiment, we tested two different coating formulations obtained from Corning 

Incorporated: plain UV-curable epoxy coating, and a UV-curable epoxy coating with ≈20 nm 

diameter silica particles uniformly dispersed at ≈30% volume fraction and bonded to the epoxy 

coating. The plain (unfilled) coating was comprised of 48 wt% of 3,4 epoxycyclohexylmethyl -3,4 

epoxy-cyclohexane carboxylate (Syna Epoxy 06, Synasia Inc., Metuchen, NJ), 48 wt% 3-Ethyl-3-

oxetanemethanol (S-101, Synasia Inc., Metuchen, NJ) as a crosslinker. The filled coating was 

comprised of 48 wt% cycloaliphatic epoxy resin (Nanopox C620 Evonik Industries, Essen, 

Germany, which contains 40 wt% epoxy functionalized nanosilica,) and 48 wt% oxetane 

crosslinker (Nanopox C680 Evonik Industries, Essen, Germany, which contains 50 wt% epoxy-

functionalized nanosilica,). Both formulations contained 1 wt% cationic photoinitiator (UVI-6976, 

Dow Chemical Co., Midland, MI) and 3 wt% adhesion promoter (A-186, Momentive Performance 

Materials Inc., Waterford NY). These two epoxy bases have different tradenames but are 

equivalent other than the addition of nanosilica filler. The plain and filled coatings had a storage 
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modulus of 2464 MPa and 4222 MPa, respectively, as measured using dynamic mechanical 

analysis at 25°C (DMA Q800, TA Instruments, New Castle, DE).  

To track the deformation field of the epoxy coating, Poly(methyl methacrylate) (PMMA) particles 

of diameter 1.8 µm and volume fraction ≈ 8% were included in both coating formulations. These 

tracer particles were fluorescently labeled with DiIC18 (1,1'-Dioctadecyl-3,3,3',3'-

tetramethylindotricarbocyanine iodide; excitation wavelength 565 nm) and thus visible on the 

fluorescence confocal microscope. All three materials (epoxy, nanosilica particles, and tracer 

particles) have refractive indices close to that of the coverslip substrate (i.e. 1.51). Therefore, the 

final coating composite had high optical transparency and minimal aberrations. After adding tracer 

particles, the coating moduli for plain and filled coatings at 25°C were 2470 MPa and 3682 MPa, 

respectively.  

To prepare plain and filled epoxy samples for imaging, PMMA tracer-particles were added. The 

PMMA particles were initially dispersed in decahydronaphthalene. The tracer-particle suspension 

was added into the epoxy after any nanosilica filling, and the mixture was vortexed thoroughly 

and left under vacuum until the decahydronaphthalene evaporated entirely. Unlike the silica 

nanoparticles, tracer particles were not functionalized and therefore not covalently bound to the 

epoxy matrix. We found that the small amount of added tracer-particles did not significantly alter 

the epoxy viscosity. Importantly, since the tracer particles were mixed with epoxy prior to sample 

curing, they are firmly entrapped in the coating matrix and flow with the coating during 

indentation.  
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The epoxy formulations were then coated onto glass substrates, creating a total of 8 samples (4 of 

each coating). To prepare the substrate for coating, the glass was first sonicated in a liquid 

detergent bath (7× cleaning solution, MP Biomedicals, Santa Ana, CA) at 3% concentration for 

five minutes, and then rinsed with deionized water. After this cleaning process, the epoxy was 

spin-coated on the glass at 1000 rpm and 1500 rpm for plain and filled epoxies, respectively, in 

order to achieve a final coating thickness of ≈ 20 µm. After the coating procedure, the samples 

were immediately cured using a table-top UV oven (2000 Flood, Dymax, Torrington, CT) for three 

minutes, corresponding to ≈ 10 J/cm2. We then used the confocal microscope to inspect the cured 

coating and only kept samples with a uniform coating thickness of 20 µm ± 2 µm. The selected 

samples were then protected from light and stored at room-temperature for at least one week to 

finish curing. Fully-cured samples were clamped in the annular sample holder and mounted to the 

indentation apparatus on the confocal microscope. To visualize the position of the diamond tip and 

the coating's upper surface during the experiment, we placed a fluorescent fluid (fluorescein-water 

solution, excitation wavelength 494 nm) on the coating after mounting. 

5.3.3 Data analysis 

5.3.3.1 Force response 

Raw force data from the load cell were first smoothed using a moving-average filter, with a 

window size of 99 points (0.99 s ≪ 11.84 s image time ≪ 950 s full experiment time), to reduce 

noise. Smoothed curves were then re-sampled using nearest-neighbor interpolation to extract the 

force during each imaging time-point. 
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5.3.3.2 Coating-glass interface location 

Imaging data sets were first analyzed to extract the z position of the glass-coating interface over 

time. At each time point, each slice of the z stack was summed in the xy plane to obtain an overall 

intensity, I, versus z position. This intensity was low in the glass because the glass is not 

fluorescent, and high in the coating, due to the fluorescent tracer particles. Images also showed 

gradual intensity decay with z due to slight refractive index mismatches. This overall intensity 

dependence was fit with a sigmoid plus a linear term,  

 𝐼(𝑧) =  𝛽0 +  𝛽1(1 + 𝑒(𝛽2−𝑧) 𝛽3⁄ )
−1

+  𝛽4(𝑧 − 𝛽2), 

where z is the height of the slice above the bottom of the stack and βi are fittings constants. Using 

this model, we extracted β2 as the interface position. 

5.3.3.3 Tip location 

After finding the interface, images were analyzed to extract the z position of the diamond tip over 

time. In the first time point, the tip's z position was determined manually using the central xz 

projection. This projection was also used to measure the coating thickness. The tip was mounted 

to the stationary force sensor and thus moves proportional to any applied force. This dependence 

was calibrated and exploited to determine the relative z displacement of the tip from the relative 

change in force. This method was particularly useful when the tip was in the sample and no longer 

clearly visible. However, in the first 5-10 time points (tip height h > 17 µm), the diamond tip 

slipped vertically slightly due to slack in the system, violating this linearity. During these time 

points, the tip height was instead determined by tracking the vertical displacement of the tip itself 
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in the confocal images. This second method was validated by confirming linearity with the force 

when the tip was not slipping and by manual comparison to the imaging data. Finally, the coating’s 

initial thickness, glass-coating interface z position over time, and tip z position over time were 

combined to determine the tip height (tip-to-glass distance, h) as a function of time for each 

experiment. Results are plotted with respect to tip height. 

5.3.3.4 Tracer particle paths 

At each imaging time-point, the 3D image data was analyzed to locate tracer particles embedded 

in the coating. Images were analyzed using the 3D, IDL-implementation of the Crocker-Grier 

particle-finding algorithm to locate the (x(t), y(t), z(t)) positions of the tracer particles159. Particle 

positions were linked over time using trackpy, the python implementation of the related Crocker-

Grier particle-tracking algorithm (search range: 1.0 µm, memory: 0 time points, minimum duration 

90% of full experiment time).  

For each experiment, the coating's flow was divided into three stages of indentation and then 

analyzed. The three stages of indentation were chosen based on the tip's height above the glass, 

where stages 1 through 3 include imaging time-points when the tip is 20 µm to 10 µm, 10 µm to 

0 µm, and 0 µm to −4 µm from the glass, respectively. Here, negative tip height indicates the tip 

penetrating into the glass. To understand the coating's flow within each stage, we characterized 

each particle's trajectory by calculating the total path length, 

 𝐿 = ∑[ (δx)2 + (δy)2 + (δz)2]1/2, 

where δx = x(t) − x(t − 1); the end-to-end displacements in the three Cartesian coordinates, 
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 Δx = 𝑥(𝑡𝑒𝑛𝑑) − 𝑥(𝑡𝑠𝑡𝑎𝑟𝑡), 

where tstart and tend are the first and last time points in the stage (similarly for y and z); and the 

radial end-to-end displacement, 

 ΔR = [Δx2 + Δy2]1/2. 

Initial data indicated slip at the coating-glass interface. To characterize any slip, particles within 

3 µm of the coating-glass interface were isolated and those with a radial displacement over a 

threshold of 0.05 µm/time-step were plotted. The area of slip was characterized by manually fitting 

an ellipse around these tracks. Due to the intrinsic spacing of tracer particles dispersed in the 

coating, this method was able to resolve slip areas larger than roughly 1500 µm2. 

Tracer particle paths were also used to compute 3D strain fields. These scattered displacement 

tracks were interpolated and smoothed on a 5 µm grid using a 3D variation of Barnes 

interpolation160. Lagrange strain fields were calculated from numeric spatial gradients of the 

displacement fields, via the central difference method. This analysis returned a full 3D strain tensor 

at each point on the 3D grid, valid for both small and large strains161. 

5.4 Results 

5.4.1 Force 

Smoothed force data for each experiment are plotted with respect to tip height above glass in 

Figure 5.1b, along with the averages for each sample group. On average, the force-response in the 
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coating was about 30% stronger in the samples with filled epoxy, reflecting the 50% higher 

modulus of the coating. However, once the tip penetrated the glass (i.e. h < 0 µm), the plain and 

filled force responses were more similar, as expected, because the glass begins to dominate the 

response. 

5.4.2 Particle paths 

The flow of the coating was reflected in the paths of the tracer particles, as shown in Figure 5.2 

for the entire indentation experiment and the three individual stages of one experiment. See 

Supplementary Material for movies of tracer particle paths for every experiment (Movies S1). 

These traces, especially during the first stage, illustrate how the coating flows to produce a pile-

up around the tip. In general, particles closer to the tip moved down and out, perpendicular to the 

tip’s face, while the hard-boundary at the bottom of the coating redirected the force such that 

particles farther away from the tip move up and out. Separately, tracer particles near the tip-

coating-fluid interface immediately moved up and out, parallel to the tip face, creating a small, 

localized pile-up that was later pushed out laterally. In the later stages of indentation, the tip and 

glass formed a wedge-like boundary that constrained the coating flow near the tip such that it was 

dominated by the lateral components. 
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Figure 5.2. Paths of tracer particles in one experiment. For stages 1 through 3, xz views of 

the paths within the range y = 0 µm ± 10 µm are shown. Additionally, the paths throughout 

the entire experiment are shown in xy and 3D projections. Each line indicates the path of a 

different tracer particle. In all plots, paths are shown relative to the glass-coating interface, 

which is at the z = 0 µm plane. 

To quantify the coating's flow, we calculated various characteristics of the tracer-particle paths 

during the three stages of indentation. In particular, Figure 5.3 shows the histograms for total path 

length, z displacement, and radial end-to-end displacement. Each plot shows the normalized 

probability density of a particular path characteristic for each individual experiment, and all 

experiments combined, for plain and filled coatings. As the tip approached and penetrated the glass 

(stages 2-3), the histograms for the two sample types became increasingly distinct. This was true 

for all path characteristics except the z displacement, where the two coating formulations both 

showed relatively small displacements at all stages of indentation. 
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Figure 5.3. Histograms of path characteristics for tracer particles during each stage of 

indentation. Histograms are shown for each experiment individually (dashed lines), as well 

as for the population average (thick lines) for plain and filled coatings. In general, the plain 

and filled coatings become increasingly distinct during the later stages. 

As exhibited in Figure 5.3, plain and filled coatings had distinctly different behaviors when 

comparing their radial flow component. This flow behavior also varied across the coating's depth 

(i.e. along z). Therefore, we further quantified the depth-dependence of the coatings' radial flow. 

Figure 5.4 shows the normalized probability density of the radial displacement (averaged over all 

samples of each sample type) plotted as a function of the tracer particles' z-position at the start of 

each stage. Consistent with Figure 5.3, these plots again show that, as indentation progressed, the 

plain and filled coatings became increasingly distinct. Particles higher above the glass (z ≳ 10 µm) 

had similar radial displacements, regardless of filling. However, in the third stage of indentation 
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when the tip approached and penetrated the glass, the tracer particles closest to the glass interface 

(z ≲ 5 µm) moved farther radially in the filled coatings as compared to the plain coatings. For 

filled samples, as z approaches the glass interface (z0 in Figure 5.4), the radial displacement 

approached a finite value (approx. 2 µm), suggesting slip between the filled coating and the glass 

substrate. Thus, data in this lowest z bin was extracted and analyzed further to characterize 

interfacial slip. 

 

Figure 5.4. Normalized probability density of tracer-particles’ radial displacement as a 

function of height above the glass interface. Results are shown averaged over all 

experiments for (a-d) plain and (e-h) filled coatings during the entire experiment and the 

three stages of indentation. The plain and filled coatings have similar behavior in the early 

stages. However, in stage 3, the trends are distinct for particles near the glass interface. In 

particular, particles in the filled coatings have a non-zero radial displacement, even at 

z = 0 µm. This trend is illustrated by the dashed lines, which are shown as visual guides. 



120 

Slip at the coating-glass interface was investigated further by observing large-displacement paths 

near the coating-glass interface (Figure 5.5a) and calculating the area of slip (if any) at each time 

point. Using this method, all samples showed some amount of slip during indentation. As the tip 

neared the glass (h = 0), however, filled coatings generally had a larger slip area (Figure 5.5b). 

Moreover, the slip area grew at a faster rate in filled samples, as compared to plain coatings. 

 

Figure 5.5. (a) XY-views of tracer-particles paths within 3 µm of the coating-glass 

interface (i.e. 0 µm ≤ z ≤ 3 µm) that displaced radially above a minimum threshold and 

thus were indicative of interfacial slip. These paths are shown for characteristic samples 

with plain (first row) and filled (second row) coatings. (b) The slip area calculated from 

the paths shown in (a), shown as a function of tip height above the glass interface, h. Slip 

areas are shown for plain and filled coatings, including individual experiments (dashed 

lines) and group averages (solid lines). 



121 

5.4.3 3D strain fields 

Tracer particles’ paths were analyzed to calculate the local 3D displacement and strain fields in 

the samples during indentation. To highlight the distribution and magnitude of the strain field and 

to provide insight regarding nonlinear behavior in the coating, Figure 5.6 shows characteristic 

surfaces of constant von Mises strain from 5% to 20% for plain and filled samples. These plots 

show the strain field during indentation when the tip height is zero, i.e. when the diamond tip 

contacts the coating-glass interface but can be similarly calculated throughout the indentation 

process. See Supplementary Material for movies of von Mises strain surfaces for all experiments 

(Movies S2). The threshold yield strain of the plain and filled coatings is unknown and the two 

may be different. Nonetheless, these constant-strain surfaces highlight the shape and magnitude of 

the deformation field during indentation, including lobes that correspond to the sharp edges of the 

pyramid-shaped diamond tip. Interestingly, we observed that the strain in the filled coatings had a 

similar shape as the strain field in plain coatings, but with a slightly lower volume enclosed within 

a given contour level. There may also be slight differences in the shape between plain and filled 

coatings. In particular, we noted that samples with filled coatings tended to have more defined 

lobes than plain coatings. 
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Figure 5.6. Characteristic surfaces of constant von Mises strain highlighted at various 

levels from 5% to 20%, shown for (a) plain and (b) filled coatings. Both plots show the 

strain field in undeformed coordinates at the point when the tip is closest to the coating-

glass interface (i.e. h ≅ 0 µm). The four lobes correspond to the four sharp edges of the 

pyramid-shaped diamond indenter. 

5.5 Discussion 

This experiment used a custom confocal method to visualize the 3D behavior of thin epoxy 

coatings on glass substrates during indentation with a pyramid-shaped diamond tip (Figure 5.1). 

In addition to recording the bulk force and tip-displacement response, tracer particles embedded 

in the coatings were tracked in 3D during indentation in order to measure the microscale flow 

behavior within the coating, including displacement and strain fields. Coatings with and without 

nanosilica bead filler were compared to elucidate the effects of nanosilica doping.  
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In bulk measurements (Figure 5.1b), filled coatings exhibited ≈ 30% higher force than plain 

coatings. This is consistent with, though slightly lower than the ≈ 50% modulus enhancement due 

to filling, as measured by traditional mechanical testing of the bulk material. On the microscale, 

the flow fields of plain and filled coatings became increasingly distinct in stages 2 and 3, as the tip 

approached and penetrated the glass. In particular, in the filled samples, tracer particles flowed 

farther laterally (Figure 5.2 and Figure 5.3). In filled coatings, the radial displacement as a function 

of particle height approached a non-zero value as height tended toward zero (Figure 5.4). These 

differences implied slip at the coating-glass interface, which was more pronounced in filled 

coatings. Thus, slip was characterized by observing the tracer particle paths near the interface with 

large radial displacements (Figure 5.5a). Using this method, slip at the interface was observed in 

all samples. However, as the tip neared the glass interface, filled samples showed a larger slip area 

which developed at a faster rate with respect to tip height, h (Figure 5.5b). This higher magnitude 

and rate of slip could be explained by the presence of the nanosilica beads. For example, consider 

the mechanisms illustrated in Figure 5.7. Initially, the nanosilica beads, if present, would be 

chemically bonded to the glass substrate146,162. Because of this structure, as the coating deforms 

laterally, the polymer connection between the bead and glass would be increasingly tensed to the 

point of rupture (Figure 5.7a). However, without beads, this strain could dissipate throughout a 

larger network structure, thus avoiding rupture. Similarly, the nanosilica beads are very stiff 

relative to the surrounding polymer network. Thus, once slip has started, it could proceed more 

rapidly in filled coatings because the beads would absorb comparatively little deformation, and 

instead transfer forces further laterally, enhancing slip growth (Figure 5.7b). 
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Figure 5.7. Illustration of the proposed mechanisms of slip in plain and filled coatings. (a) 

In plain coatings, the entire polymer network can absorb shear strain. In filled coatings, 

however, the silica nanoparticles bond directly to the glass interface, leading to strain 

concentration and failure of this bond. (b) Because nanosilica particles are very stiff 

compared to the surrounding polymer network, compressive strain may cause relatively 

more densification in the filled coating and this may subsequently explain the different 

rates of slip observed in plain verses filled coatings. 

Tracer particle tracks were also used to compute local 3D strain fields throughout the indentation 

process. In particular, the local von Mises strain had a consistent shape across all experiments, 

including four lobes of high strain around the corners of the pyramid indenter (Figure 5.6). While 

the shape was similar, the overall volume contained in a given strain contour was consistently 

lower in the filled coatings as compared to plain, despite at equal tip height (h = 0; i.e. equal strain 

boundary conditions). Also, the filled-coating samples retained more distinct lobes. This 

observation may again be explained by the differences in interfacial slip between the two samples. 

Importantly, the strain measured here represents strain in the coating material only (i.e. material 

strain) and does not incorporate any effective strain from relative coating-glass displacement. As 

a result, slip would serve to reduce the strain measured in the coating. Similarly, increased slip 
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would reduce any effective “pinning” of the strain field at the glass interface, thus freeing the strain 

field to retain the lobe shape resulting from the diamond-tip’s geometry. 

Slip is common in these coated-glass systems and previous studies have used indentation testing 

and the onset of slip to study adhesion and failure. For example, Ritter et. al. developed 

microindentation to measure adhesive shear strength of polymer coatings on glass, using both a 

ball and Vickers-type indenters150,155. Slip may also be important for load transfer between coating 

and substrate and thus have important implications for the ability of such coatings to protect 

underlying glass. In future work, it would be interesting to examine the relationship between 

nanoparticle filler concentration, coating-glass adhesion, and coating properties after plastic 

deformation. Recent literature has lauded the benefits of nanosilica beads in polymer coatings for 

increasing toughness without compromising other mechanical benefits145–148. The results of this 

study reveal that nanosilica filled coatings may be more susceptible to interfacial slip at a glass 

surface than plain coatings. This effectively reduces the material strain in filled coatings and likely 

alters the stress field in the underlying glass while increasing the energy absorbed at the interface. 

Understanding local coating behavior is essential for studying coated glass systems as a whole. 

Ritter et. al. also observed pile-up around the indenter in polymer coated glass systems and applied 

a load-sharing model to understand the bulk force response10,149. Others have similarly developed 

theoretical models and used simulation and finite element modeling to understand the local 

distribution of stresses in coated or layered systems11,15,156. In contrast, the method developed here 

enables direct experimental visualization of the local coating deformation, complementing existing 

theoretical and modeling approaches. The method used in this study could also be repeated with 

the addition of stress-sensitive dyes to enable direct, 3D visualization of the stress field163,164.  
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This method provided detailed information about indentation but was not without limitations. In 

particular, confocal imaging requirements limit sample geometry and introduce trade-offs between 

resolution and field-of-view. In order to achieve high spatial resolution, a high magnification 

objective with a correspondingly low working distance of about 100 µm was used. Similarly, high 

magnification corresponds to small field-of-view and important sample behaviors may occur on 

larger lateral length scales, outside the imaging field. Also, despite high-speed imaging, it takes 

multiple seconds to image the entire field-of-view, thus limiting the temporal resolution. Despite 

these limitations, the imaging parameters may be adjusted to capture the physical time and length 

scales of interest. This technique is also limited by the tracer particles. Not only must they be 

incorporated, but the imaging resolution must be appropriate to track these tracer particles, though 

their size is somewhat adjustable. The amount and distribution of tracer particles similarly sets the 

spatial resolution of resulting 3D displacement and strain fields. Nonetheless, the tracer particles 

enable the local 3D microscale deformation and strain to be tracked in situ. 

Overall, the method presented here provides unprecedented access to information about microscale 

processes in 3D throughout indentation. In particular, we directly observed and quantitatively 

characterized indentation flow in situ on the micrometer scale in order to better understand glass-

coating interactions, adhesive failure, and the role of silica nanoparticle fillers. This experimental 

method directly complements existing theoretical and modeling approaches to understanding these 

phenomena and is applicable to a wide array of mechanical phenomena. 
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CHAPTER 6. CONCLUSIONS 

6.1 Conclusions 

Reflecting on the work presented here, we see that imaging in concert with spatiotemporal analysis 

is an exciting and useful avenue for relating the complex mechanical behavior of a system, such 

as articular cartilage, to its function and dysfunction.  

In articular cartilage, we discovered that traumatic impact induces rapid, strain-dependent 

mitochondrial dysfunction and cell death in chondrocytes (Chapter 2-Chapter 3). Understanding 

this relationship between injury mechanics and cellular dysfunction, as well as its rapid temporal 

evolution, is central to elucidating the mechanotransduction pathways that lead from injury to 

disease. Furthermore, understanding this evolution enabled us to test promising mitoprotective 

drugs that directly target mitochondria structure and may arrest the downward spiral into joint 

dysfunction (Chapter 3). More broadly, these studies demonstrate the utility of combining imaging 

data and analysis from disparate sources (e.g. fast camera elastography plus microscopy assay 

segmentation and classification) to investigate the detailed biomechanics and mechanobiology 

relationships that regulate tissue function.  

In addition to understanding the acute pathogenesis of joint disease, we also discovered that the 

heterogeneous, layered properties of articular cartilage may serve to protect the tissue, both 

biologically and mechanically (Chapter 2, Chapter 4). From the cellular perspective, we found 

that, because cell death after impact is correlated with impact strain, the compliant surface layer 

of cartilage can absorb load and thus may protect the underlying cells during injury (Chapter 2). 
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Similarly, from the perspective of mechanical integrity, we found that the presence of the surface 

layer delays the onset of matrix cracks in articular cartilage (Chapter 4). These discoveries have 

important clinical implications, particularly because cracks in cartilage are commonly observed 

after traumatic injury and because joint disease involves the mechanical degradation of the tissue, 

especially from the articular surface. Taken together, these studies highlight the importance of 

preserving cartilage’s layered structure for maintaining the mechanical and biological homeostasis 

necessary for cartilage function in the joint. Paradoxically, however, these results also suggest a 

‘sacrificial’ surface layer, wherein the superficial cells experience more extreme loading and are 

thus more likely to die, which in term compromises the mechanical integrity of that important 

surface layer. While this paradox could be true, it more likely points to a complicated relationship 

between biomechanics and mechanobiology of articular cartilage. Perhaps chondrocytes in the 

superficial layer are more likely to recover or regenerate after injury, or perhaps their response to 

loading is different than chondrocytes in the bulk of the tissue. These are new and important 

questions that we hope will be resolved by future studies. 

6.2 Future directions 

The natural end of any research project is not simply the end, but an open door to other fascinating 

ideas that continue to move the field forward. After conducting these studies on cartilage 

biomechanics and mechanobiology, many promising future directions await our study, including 

those detailed below. 
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6.2.1 Mechanobiology and the peracute-to-acute evolution of chondrocyte dysfunction after 

articular cartilage injury 

As shown in this thesis, cellular dysfunction in articular cartilage begins within minutes of 

injurious loading, with important implications for targeted treatment of cartilage degradation. 

However, the full temporal evolution of chondrocyte response to injury is not yet well-understood. 

In a recent paper, Anderson et. al. outlined the conceptual framework of the various known waves 

of cellular response to injury, including early necrosis and inflammation, as well as the catabolic-

to-anabolic transition that occurs many days later2. Though useful, an important knowledge gap 

remains: How do individual cells navigate through these various “states” over time? Moreover, 

how do the mechanics of injurious loading and any therapeutic treatments influence this temporal 

evolution? Indeed, we now wonder: If peracute chondrocyte dysfunction is strongly regulated by 

mechanotransduction via mitochondria, is this also true of the later, acute dysfunction? Given the 

methods developed in this thesis, we are now well-equipped to answer these questions. By 

upgrading the custom impactor developed in Chapter 2 to facilitate long-term sterile culturei, 

cartilage explants could be injured and then cultured over longer times, enabling periodic checks 

via fluorescence microscopy assays and media analyses. A corresponding statistical analysis of 

individual cell state (e.g. via survival analysis) could then determine how factors such as treatment 

and injury mechanics influence cells’ injury response. Moreover, analogous to the study by 

Garrido et. al., culturing unimpacted control samples either in the same or a separate bath as their 

impacted counterpart would further elucidate which of these chondrocyte responses are signaled 

via mechanical stimulation verses chemical communication165. Answering these questions would 

complement our understanding of the peracute (minutes-to-hours) response, would reveal to what 

http://tardis.wikia.com/wiki/Cyberman
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degree injury mechanotransduction influences the acute (hours-to-weeks) dysfunction, and would 

enable researchers to optimize drug treatments and therapies accordingly. 

6.2.2 Double-network hydrogels and crack propagation in articular cartilage 

Despite the progress presented in this thesis, the development of cracks in articular cartilage 

remains an understudied yet important problem. In particular, there is no accepted unifying model 

governing cracks in cartilage and, as such, individual studies characterizing cracks are of limited 

utility. Establishing such a model would be of broad interest and provide utility for understanding 

why cracks develop, predicting when and where cracks will happen (e.g. via patient specific 

modeling), and preventing cracks clinically. Interestingly, one observation from Chapter 4 is the 

parallel between toughness in articular cartilage and that in double-network hydrogels. For 

example, during blade indentation, cartilage deformation appears similar to that of double-network 

hydrogels139,166. Also, initial studies of a double-network, rigidity-percolation model of articular 

cartilage show promising parallels between crack propagation in the model and that observed in 

notch-tests of cartilage37,167,168. In double-network hydrogels, the first network is a rigid skeleton 

which may be analogous to the collagen network in cartilage, while the second, energy-dissipating 

network may be analogous to the charged proteoglycan network in cartilage. Thus, one future 

direction of this work would be to explore these parallels between double-network models and 

cartilage material failure in more detail. In particular, to validate the predictive power of a double-

network model for understanding cartilage failure, it would be interesting to conduct a two-part 

study. First, to demonstrate the applicability of such a model, one study could test a double-

network, rigidity-percolation model in a traditional notch-test geometry and compare this model’s 

predicted local deformation and critical-load at crack propagation to that observed in real cartilage 
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samples via confocal elastography during an analogous notch-test. Second, in order to validate the 

model, it would be especially interesting to enzymatically degrade cartilage’s proteoglycan 

network, model a similar loss of the secondary network in the double-network model, and again 

compare the results regarding deformation and failure in a notch-test169,170. If a double-network 

model can recapitulate the failure response of both normal and degraded cartilage, this result would 

show that the model can be tuned to predict cartilage material property changes. This observation 

would further solidify the importance of cartilage’s double-network structure in governing its 

mechanical function and failure. This interpretation of cartilage as a double-network material 

would be especially interesting because, in cartilage, degradation of the proteoglycan network is a 

hallmark of joint damage and disease. Understanding the interplay between cartilage matrix 

constituents, cartilage’s network structure, and subsequent material failure would provide broad 

insight regarding cartilage homeostasis and dysfunction, both as an engineering material and as a 

critical tissue for health joint function. 
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