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Imaging assays of cellular function, especially those using fluorescent stains, are ubiquitous in
the biological and medical sciences. Despite advances in computer vision, such images are often
analyzed using only manual or rudimentary automated processes. Watershed-based segmentation is
an effective technique for identifying objects in images; it outperforms commonly used image analysis
methods, but requires familiarity with computer-vision techniques to be applied successfully. In this
report, we present and implement a watershed-based image analysis and classification algorithm in
a GUI, enabling a broad set of users to easily understand the algorithm and adjust the parameters
to their specific needs. As an example, we implement this algorithm to find and classify cells
in a complex imaging assay for mitochondrial function. In a second example, we demonstrate a
workflow using manual comparisons and receiver operator characteristics to optimize the algorithm
parameters for finding live and dead cells in a standard viability assay. Overall, this watershed-based
algorithm is more advanced than traditional thresholding and can produce optimized, automated
results. By incorporating associated pre-processing steps in the GUI, the algorithm is also easily
adjusted, rendering it user-friendly.

I. INTRODUCTION

In the biological sciences, fluorescence microscopy im-
ages are ubiquitous, especially for visualizing and assess-
ing groups of cells, in situ or otherwise. For example,
a common imaging assay used throughout biology and
medicine is the viability staining assay, which highlights
individual cells as either alive or dead based on the color
of their fluorescence [1–8]. However, when such images
are quantified, the fraction of viable cells is commonly
computed either by manual counting or using a sim-
ple threshold and region-counting procedure [6–8]. Such
results are useful, but the growing use of computer vi-
sion and advanced processing algorithms has opened the
door to advanced, automated pipelines [9]. Such analysis
pipelines usually include a segmentation process to iden-
tify cells or other regions of interest, followed by an anal-
ysis and possible classification process to extract data of
interest.

Segmentation is the process of identifying objects in
an image (e.g. cells), thus separating them from the
background and each other. Once obtained, a segmen-
tation result enables the researcher to not only count
the number of cells but also analyze individual cells to
extract relevant information about them, such as their
shape, size, or behavior. Automatic segmentation is
more appealing than manual counting because it enables
high-throughput data analysis and thus higher statistical
power with increased efficiency and less human bias. A
segmentation result further allows each object or cell to
be analyzed based on the local image data in that region,
such as staining intensity, which may reflect useful infor-
mation about the cell. Thus, by identifying cell regions,
segmentation enables a range of automated data analy-

sis techniques, such as classification into different groups
(e.g. alive vs dead). This type of data analysis pipeline
similarly enables both spatial and temporal analysis -
tracking individual cells’ locations and their states over
time. Without automated analysis, these methods are
not applicable and their benefits are unrealized.

The watershed segmentation algorithm has been suc-
cessfully implemented to automatically find and analyze
cells in fluorescence micrographs [10]. The watershed
algorithm considers the 2D grayscale image as a topo-
graphical map with mountains of high pixel values and
valleys of low pixel values [11–13]. In this analogy, the
algorithm adds water to the image landscape to deter-
mine the independent catchment basins and the ridge
lines separating those basins. Each catchment basin is
then a segmented object. This algorithm is advantageous
for separating objects that are close or touching in the
image and is less susceptible to overall intensity varia-
tions [13]. However, such watershed segmentation has
resisted widespread adoption, in part because it is prone
to oversegmentation, producing too many regions that
are too small. Common methods to avoid oversegmen-
tation include more advanced region-growing procedures
and marker-guided segmentation [11, 13–15]. However,
these techniques are not readly accessible to the broad re-
search community without advanced experience in com-
puter vision and a scripting language.

Thus, to make a watershed-based image analysis
pipeline more accessible to biomedical researchers, we
present and implement an image analysis and classifica-
tion algorithm. We deploy this algorithm together with
associated pre- and post-processing steps in a graphical
user interface (GUI), enabling the user to easily under-
stand and adjust the various steps to their specific needs.
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As an example, we implement this algorithm to find and
classify cells in a three-color fluoresce microscopy assay
of mitochondrial function where the cells have complex,
non-contiguous staining. As a second example, we ap-
ply the algorithm to a two-color, live-dead staining as-
say and outline a workflow to optimize and validate the
parameters using manual identification and receiver op-
erator characteristics. This algorithm, which relies on
watershed-based segmentation, is more advanced than
traditional thresholding and can thus provide more reli-
able results. By incorporating associated pre-processing
steps in the GUI, the algorithm is also easily adjusted.
Similarly, by incorporating post-processing analyses, we
enable the user to extract additional data of interest.

II. ALGORITHM

The algorithm presented here includes image filtering
and segmentation followed by object classification. For
segmentation, this algorithm first filters the image then
prepares for and applies background-enforced watershed
segmentation, with optional realistic limits on the results.
After segmentation, the resulting objects can be classi-
fied into two groups by thresholding based on their pixel
intensities.

A. Segmentation

Before segmentation, the raw image is filtered to re-
duce common flaws and artifacts and modified to pre-
pare for segmentation. First, if the raw image is a
3-color channel (i.e. RBG) image, it is converted to
grayscale intensity image using the MATLAB function
rgb2gray (The MathWorks Inc., Natick, MA). All sub-
sequent segmentation operations are performed on a
grayscale image. Second, adaptive histogram equaliza-
tion (adapthisteq) is used to reduce the effects of un-
even illumination. The degree of illumination correction
and contrast enhancement is controlled by the equaliza-
tion clip limit parameter, which ranges from 0 to 1, with
a default value of 0.01. Third, a median filter (medfilt2)
is used to compute the image background, which is then
subtracted from the image. This background-subtraction
step reduces the effects of out-of-plane signal and uneven
illumination, and increases the contrast between objects
and their adjacent background. The size of the median
filter is governed by the background size parameter. This
size, which specifies the diameter of the median filter,
should be an odd integer that is larger than any object
you are trying to segment. Fourth, a second median fil-
ter (medfilt2) and a Gaussian filter (imfilt) are ap-
plied to reduce high-frequency components in the image.
The diameter of this second median filter is governed by
the median size parameter while the Gaussian radius is
governed by the Gaussian radius parameter. The median
size should also be an odd integer approximately equal to

or smaller than the objects to be segmented. The Gaus-
sian radius can by any positive real number but should
also be smaller than the objects to be segmented. These
median and Gaussian filters serve both to reduce pixel-
level noise and to smooth and blur away small-scale im-
age variations within an single object . Combined, these
four steps produce a filtered image that is used for wa-
tershed segmentation. In the GUI the latter three steps
are optional and can be selectively included or excluded
from the filtering process if desired. If a given step is
not necessary to achieve a good segmentation result, ex-
clusion may be beneficial to save computation time, for
example.

To segment objects, background-enforced watershed
segmentation is applied. This is a variant of water-
shed segmentation where some pixels in the image are
forced to be part of the background (i.e. peaks or val-
leys). First, the filtered image is thresholded using a two-
level Otsu filter, breaking the image into three groups
(multithresh) [16]. Pixels in the darkest group are said
to belong to the watershed background. Second, the fil-
tered image is inverted so objects are dark on a light
background, i.e. objects are catchment basins. Third,
all background pixels are then set to the same low eleva-
tion, so they will collect into one catchment basin that is
later discarded. Fourth, the watershed transform is ap-
plied (watershed), returning a segmentation result that
defines unique catchment basins. Then, all segmented
objects that contain one or more background pixels are
forced to be part of the background and thus discarded.
Finally, realistic limitations on object size and brightness
are enforced. In particular, the minimum area and maxi-
mum area parameters, specified in square pixels, impose
limitations on the area of any segmented object in the
image. Similarly, the minimum signal parameter speci-
fies the minimum average intensity within an object, such
that very dim segmented objects are discarded. The min-
imum signal is specified as a number ranging from 0 to
1, representing the full range of intensities in the raw
grayscale image.

The result of the filtering and segmentation steps is
a segmentation result, where each pixel in the image is
identified as belonging to the background or the first ob-
ject or the second object, etc. This information is stored
as a label matrix the same size as the original image,
where the value at each pixel specifies the object that
pixel belongs to (0 is background, 1 is the first object,
etc.). This segmentation can be linked back to the raw
intensity image and used for post processing and to com-
pute outcomes of interest for each object, such as the ob-
jects position, area, and average intensity in each color
channel. In particular, the raw image and segmentation
result are used to classify the found objects.



3

B. Classification

After segmentation is complete, the result is related
back to the raw image in order to classify objects based
on the pixel intensities in each color channel. Each ob-
ject, as defined by the segmentation result, contains many
pixels. In the raw image, these same pixels are associ-
ated with pixel intensities, where each pixel has three
intensity values associated with it: red, green, and blue
(in that order, by default). For example, if segmented
object number 15 contains 121 pixels (perhaps it is an 11
pixel × 11 pixel square), then there are 3 colors × 121
pixels or 363 intensity values associated with that ob-
ject. These intensity values are utilized to classify each
segmented object.

To classify objects, a classification function f(R,G,B)
is applied to each object, where R, G, and B are the
list of red, green, and blue pixel values in a given ob-
ject, respectively. As such, this MATLAB-based func-
tion f should take three lists of equal length and re-
turn one scalar value output. For example, the function
mean(R)-mean(G) subtracts the mean value of green pix-
els from that of red pixels, while blue values are ignored;
if the result is greater than zero then there is more red sig-
nal in the object than green signal, and vice versa. In the
GUI, this function f(R,G,B) can be varied to meet the
users’ needs. When applied, the function produces one
scalar value for each segmented object. The GUI displays
a histogram of theses scalar outputs. After calculating
the classification function, the resulting scalar values are
thresholded to divide the associated objects between two
classes, or states: objects with scalar values above the
threshold are considered to be in state 1 and those be-
low in state 2. The threshold value can be chosen either
manually or automatically via Otsu’s method [16]. The
scientific interpretation of these two states will depend
on the imaging setup (e.g. fluorescent stains, imaging
filters), the design of the classification function, and the
threshold value. Note that, although only three-color raw
images are discussed above, this process is equally valid
for grayscale images. Grayscale images are represented
in three-color (red, green, and blue) but with all color
channels equal, resulting in a simple grayscale intensity
variation.

C. Code

The algorithm and associated MATLAB-
based GUI are freely available online, along
with instructions for installation and use:
https://github.com/itaicohengroup/watershed cells gui.

III. EXAMPLE IMPLEMENTATION

To illustrate this algorithm, we apply it to an example
microscopy image and show the output at each step.

A. Sample preparation

The example image (Figure 1) shows chondrocytes in
a neonatal bovine articular cartilage tissue explant. The
explant was dissected sterilely from the medial condyle of
a neonatal bovine stifle joint (sex unknown). The 6 mm-
diameter explant was rinsed in phosphate buffered saline,
incubated overnight, and bisected to create a hemicylin-
der. One hemicylinder was stained for 50 minutes in 200
nM MitoTracker Green to stain all of the mitochondria
green, for 20 minutes in 10 nM Tetramethylrhodamine
methyl ester (TMRM) to stain only polarized mitochon-
dria red, and 20 minutes in 100 nM Sytox Blue to stain
all permeable nuclei blue (all stains: ThermoFisher Sci-
entific, Waltham, MA). Thus, the red fluorescence high-
lights only polarized mitochondria, the green fluorescence
highlights all mitochondria, and the blue fluorescence
highlights dead cells. Images of stained chondrocytes in
the whole tissue explant were collected using a confocal
microscope (LSM 880 inverted, Carl Zeiss Microscopy,
Jena, Germany). An image was taken of the flat cut
surface using a 20× objective.

B. Segmentation

The example image of the mitochondrial function as-
say was analyzed using the steps described above, imple-
menting the parameters as detailed in Table I. Example
step-wise outputs of filtering and segmentation are illus-
trated in Figure 1. Figure 1A-C shows the raw image
and segmentation result. Figure 1D-H illustrates the fil-
tering steps 1-4 applied to this image, and Figure 1I-M
shows output from segmentation steps 1-5. Note that,
in the raw and grayscale image (Figure 1A-B,D), cells
do not have consistent staining morphology. Due to the
nature of the stains used, some cells have relatively con-
stant pixel values throughout (arrow 1), while others have
speckled staining pattern in an annular shape (arrow 2).
This pattern results because a cell generally contains mul-
tiple mitochondria which all stain red with TMRM but
are excluded from the nucleus. Similarly, the relative in-
tensity of staining varies between cells. Each of these fac-
tors complicates and reduces the ability of simple thresh-
olding to accurately identify and segment regions.

Figure 2 shows the segmentation results obtained by
this custom watershed-based algorithm compared to seg-
mentation by Otsu thresholding and by watershed seg-
mentation without any filtering or pre-processing beyond
inversion. Both threshold and simple watershed methods
display over-segmentation, with much more in the latter.
Thresholding (Figure 2A) is sensitive to intensity varia-
tions across the image, resulting in smaller, poorly seg-
mented regions in the bottom right corner of the full-scale
image. Watershed segmentation with appropriate filter-
ing results in gross oversegmentation (Figure 2B). The
custom filter and watershed-based method described in
this manuscript (Figure 2C) is imperfect but a clear im-

https://github.com/itaicohengroup/watershed_cells_gui
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FIG. 1. Example implementation of filtering and segmentation steps (as detailed in the text and Table I). Frame (A) shows the
full image with segmented regions outlined in gray, where the red square highlights a subset of the full image that is explored for
the remainder of this figure, including (B) the raw image subset and (C) the corresponding final segmentation result. Filtering
steps1-4 and segmentation steps 1-5 are shown for this subset in (D-H) and (I-M), respectively. The subset is shown after
(D) grayscale conversion and (E) histogram equalization. The background image (F), is subtracted from (E) to produce (G),
which is subsequently smoothed, producing (H). The binary background is shown in (I), with the background in white, and
(J) shows the inverted filtered image. The background is then enforced, yielding (K). Finally, watershed segmentation on (K)
produces the numbered segmented regions indicated in (L), and unrealistic regions are discarded (as is the background region),
producing the regions shown in (M). The segmented regions in (M) are the same regions outlined in (A) and (C).

provement. The custom watershed method consistently
segments cells across the image and separates most ad-
joining cells, though there are some errors from erro-
neously separating or combing neighboring cells.

C. Classification

After segmentation, the example image of the mito-
chondrial function assay was analyzed to classify cells
based on mitochondria polarity, using the parameters de-
tailed in Table I. In the staining assay utilized here, only

cells with polarized mitochondria stain red. As such, only
the red pixels from each cell were analyzed and the scalar
classification function f was chosen to be mean(R). These
scalar values were thresholded at the value shown in Ta-
ble I to classify each cell as having either polarized mito-
chondria (state 1) or depolarized mitochondria (state 2).
The threshold value was chosen by visual inspection. As
an example, Table II lists the red, green, and blue pixel
values for two example regions and their mean values.
Because the image was collected with 8 bit depth, the
pixel values range from 0 to 255. In this case, cell A has
a scalar value above the threshold of 9 (f(R,G,B) = 17)
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Stage Step Description Parameter Value

Segmentation Filter 1 Convert to grayscale

2 Histogram equalization Equalization clip limit 0.01

3 Background subtraction Background size 19 px

4 Smoothing Median size 7 px

Gaussian radius 7 px

Watershed 1 Determine background

2 Invert

3 Enforce background

4 Watershed

5 Impose realistic limits Minimum area 35 px2

Maximum area 2000 px2

Minimum signal 0.2

Classification 1 Compute scalar function for
each segmented object

Function f(R,G,B) mean(R)

2 Threshold scalar output to
determine state

Threshold 0.35 = 9/255

TABLE I. Steps in the segmentation and classification algorithm, their associated parameter names, and the parameter values
applied to analyze the example image shown in Figure 1 and Figure 3.

Cell A Cell B

Pixel # Red Green Blue Red Green Blue

1 0 12 28 0 21 5

2 6 6 19 9 30 2

3 20 18 5 0 15 15

4 0 9 15 5 13 3

5 13 12 2 8 13 11

6 0 12 28 0 21 5

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

Mean 17 10 9 3 16 44

Classification State 1 State 2

TABLE II. Two regions, or cells, chosen from the example
image in Figure 3, and a subset of their associated pixel values
in the red, green, and blue channels. The mean pixel values
are also shown, indicating that, based on the parameters in
Table I, cell A would fall into state 1, and cell B into state 2.

and thus is in state 1 with polarized mitochondria, while
the opposite is true for cell B. The complete results of
this classification are illustrated in Figure 3, with regions
in state 1 outline in magenta and those in state 2 out-
lined in cyan. Based on these results, there were a total
of 844 regions, with 462 in state 1 and 382 in state 2.

IV. OPTIMIZATION WORKFLOW

As a second example, we apply our custom watershed
algorithm to an image of a standard viability assay. By
comparing to manually-determined ground truth, we il-
lustrate a protocol for optimizing the segmentation and
classification parameters for a particular assay. In this
example, we optimize the segmentation parameters for
cell-counting procedures and optimize the classification
threshold for separating live and dead cell populations.

A. Sample preparation

The second example image (Figure 4A) also shows
chondrocytes in a neonatal bovine articular cartilage tis-
sue explant. The explant was dissected from the femoral
condyles of a neonatal bovine (sex unknown). The 6
mm-diameter explant was rinsed in phosphate buffered
saline, exposed to mechanical perturbation, and then bi-
sected to create a hemicylinder. This hemicylinder was
then stained for 20 minutes in 4 M calcein AM to stain
the cytoplasm of live cells green and 2 M ethidium ho-
modimer to stain the nuclei of dead cells red (all stains:
ThermoFisher Scientific, Waltham, MA). Thus, the red
fluorescence highlights dead cells while green fluorescence
highlights all live cells, revealing the amount and spatial
distribution of cell viability. Images of stained chondro-
cytes in the whole tissue explant were collected using a
confocal microscope (LSM 710 inverted, Carl Zeiss Mi-
croscopy, Jena, Germany). An image was taken of the
flat cut surface of the tissue, showing the depth-profile of
the tissue.

B. Segmentation parameter optimization

To optimize the segmentation parameters for this via-
bility assay, segmentation results were compared to man-
ual counting. Custom MATLAB code was used to display
the example image and collect user-selected locations of
all cells in the image. Automatically computed segmen-
tation results, particularly the label matrix, were used to
compute the centroids of each segmented region or cell.
In addition to visual inspection, the automatic and man-
ual counting results were compared by binning the num-
ber of cells as a function of tissue depth and computing
a sum of squared-differences metric, w, given by Equa-
tion 1. The algorithm parameters were varied, visually
inspecting the result and computing the metric, w, for
each set of parameters. Note that, in this case, the pa-
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FIG. 2. Comparison of segmentation results obtained by ap-
plying different methods to the grayscale image. In each
frame, segmented objects are outlined in gray. Segmen-
tation is compared for (A) Otsu thresholding, (B) water-
shed segmentation after inversion but without any filtering
or pre-processing, and (C) the custom watershed algorithm
described in this manuscript.

rameter space was explored manually, but this processes
could be automated with standard or advanced param-
eter optimization protocols to achieve more optimal pa-
rameter convergence. The resulting optimal segmenta-
tion is shown in Figure 4. Note that this procedure was
designed to determine the best parameters for accurate
cell counts.

w =
∑
bins

(Nmanual −Nautomatic)
2 (1)

FIG. 3. Classification output for the example image, shown in
full (left) and for a subset (right). Cells in state 1 (polarized
mitochondria) are outlined in magenta and cells in state 2
(depolarized mitochondria) are outlined in cyan.

FIG. 4. Viability staining assay in articular cartilage and
associated optimal segmentation results. (A) Subset of raw
image showing live cells in green and dead cells in red, (B)
grayscale subset from (A), shown with manually-located cells
centroids marked by black crosses and automatically found
cells centroids indicated by red circles. (C) Binned centroids
as a function of depth (as indicated in (A)), for both manually
and automatically determined cells.

C. Classification parameter optimization

The classification function was chosen based on the
underlying staining mechanisms. In this assay, live cells
stain green while dead cell stain red. To reflect this stain-
ing mechanism, the classification function was chosen to
be mean(R)/mean(G). Thus, live cells will tend to have
f values below 1 and dead cells will tend to be above
1. Standard receiver operating characteristic analysis
methods were applied to determine the optimal threshold
value of f [17]. A randomly subset of 100 segmented cells
(≈20% of all cells) was selected for manual classification.
Each cell in this subset was manually determined to be
either alive or dead, based on visual inspection of the im-
age. These manual state determinations were compared
to the scalar values from the classification function to
determine the best threshold value. The threshold was
varied from 0 to 2 and its accuracy was calculated based
on true positive and true negative rates (Equation 2).
Based on these results, there is a range of threshold val-
ues around 1.2 with maximal accuracy, as shown in Fig-
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ure 5. As such, the optimal classification threshold was
chosen to be 1.2 for this imaging assay.

FIG. 5. Optimal segmentation results for the cells segmented
in the viability staining assay shown in Figure 4. (A) Distri-
bution of classification function scalar values, f(R,G,B), for a
subset of 100 cells, plotted against their manually-determined
state: either dead or alive. The optimal threshold of 1.2 is
indicated by the dashed line. (B) To determine the optimal
threshold, i.e. the threshold with maximal accuracy, accuracy
was plotted for thresholds varying from 0 to 2.

Accuracy =
NTrue positive + NTrue negative

NTotal
(2)

V. DISCUSSION

Image analysis is an important tool used to quickly
and automatically extract quantitative data from im-
ages. However, advanced image analysis techniques can
be complex and non-intuitive, especially for a researcher
without experience in computer vision. For this reason,
despite the plethora of available techniques, researchers
often analyze their images only qualitatively, or with
rudimentary quantitative methods. Making advanced
techniques more user-friendly can accelerate scientific

understanding by enabling many researchers to extract
more data without any hardware updates.

To address this need, we developed a relatively sim-
ple watershed-based algorithm for segmenting cells in 2D
fluorescence microscopy images. To make the algorithm
transparent yet easy to implement, we deployed this al-
gorithm, along with pre- and post-processing steps in
a MATLAB-based GUI. This algorithm and GUI con-
sist of two primary steps: segmentation and classifica-
tion. To combat the common problem of oversegmenta-
tion from the watershed algorithm, we include a variety
of pre-processing filtering steps. To demonstrate its use,
we applied this algorithm to two different fluorescence
imaging assays: mitochondrial function and cell viabil-
ity. We further optimized the parameters for segmenting
and classifying cells in the viability assay, demonstrating
a pipeline for other applications.

In the literature, a variety of other techniques and soft-
ware tools have been developed to similarly address the
need for accessible image analysis in the biomedical sci-
ences. For example, ImageJ includes many common im-
age analysis protocols in a graphical interface and also al-
lows custom plug-ins and macro-development [18]. Other
tools for image analysis and segmentation pipelines in-
clude CellProfiler and CellSegm [19, 20]. The algorithm
presented here represents a similar tool developed for our
in-house use and, though not compared quantitatively to
other pipelines, we hope it is similarly useful for a broader
audience to better learn and implement such image anal-
ysis techniques. The code is freely accessible using the
link above. We welcome any comments and feedback re-
garding the algorithm and its implementation.
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